首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed density measurements on a synthetic equivalent of lunar Apollo 17 74,220 “orange glass”, containing 9.1 wt% TiO2, at superliquidus conditions in the pressure range 0.5-8.5 GPa and temperature range 1723-2223 K using the sink/float technique. In the lunar pressure range, two experiments containing pure forsterite (Fo100) spheres at 1.0 GPa and 1727 K, and at 1.3 GPa-1739 K, showed neutral buoyancies, indicating that the density of molten orange glass was equal to the density of Fo100 at these conditions (3.09 ± 0.02 g cm−3). A third tight sink/float bracket using Fo90 spheres corresponds to a melt density of 3.25 ± 0.02 g cm−3 at ∼2.8 GPa and ∼1838 K.Our data predict a density crossover for the molten orange glass composition with equilibrium orthopyroxene at ∼2.8 GPa, equivalent to a depth of ∼600 km in the lunar mantle, and a density of ∼3.25 g cm−3. This crossover depth is close to the orange glass multiple saturation point, representing its minimum formation depth, at the appropriate oxygen fugacity (2.8-2.9 GPa). A density crossover with equilibrium olivine is predicted to fall outside the lunar pressure range (>4.7 GPa), indicating that molten orange glass is always less dense than its equilibrium olivines in the Moon. Our data therefore suggest that that lunar liquids with orange glass composition are buoyant with respect to their source region at P < ∼2.8 GPa, enabling their initial rise to the surface without the need for additional external driving forces.Fitting the density data to a Birch-Murnaghan equation of state at 2173 K leads to an array of acceptable solutions ranging between 16.1 and 20.3 GPa for the isothermal bulk modulus K2173 and 3.6-8 for its pressure derivative K′, with best-fit values K2173 = 18.8 GPa and K′ = 4.4 when assuming a model 1 bar density value of 2.86 g cm−3. When assuming a slightly lower 1 bar density value of 2.84 g cm−3 we find a range for K2173 of 14.4-18.0 and K′ 3.7-8.7, with best-fit values of 17.2 GPa and 4.5, respectively.  相似文献   

2.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

3.
A means for estimating pressures in natural samples based on both the coupled substitution (Na+)[1+] (Ti + [VI]Si)[4+] = (M)[2+] (Al + Cr)[3+], and the classic pyroxene-stoichiometry majorite-substitution into garnet at high-pressure, is derived for garnets with majoritic chemistry. The technique is based on a compilation of experimental data for different bulk compositions. It is compositionally and thermally robust and can be used to estimate pressures experienced by natural materials during formation of majoritic garnet. In addition, it can be used either retrospectively, or in new experimental studies to establish the pressures of crystallization of reaction products, and determine if disequilibrium is recorded by the chemistries of majoritic garnets. Pressures are calculated based on majoritic chemistries in chondritic meteorites and diamond inclusions. Majoritic garnets associated with Mg perovskite in shocked L chondrites (n = 4) yield uniform pressures of 23.8 ± 0.2 GPa that are slightly higher than pressures recorded by majoritic garnet in shock-derived melt veins in L chondrites (22.4 ± 0.6 GPa; n = 5). Similar pressures are also exhibited by shock-derived majoritic garnets in H chondrites (22.2 ± 1.1 GPa; n = 3). Diamond inclusions with eclogitic and peridotitic majoritic garnet chemistries exhibit mean pressures of 10.7 ± 2.7 GPa (n = 30) and 8.3 ± 1.6 GPa (n = 15) respectively, consistent with a sub-lithospheric origin. However, pressures defined by majoritic diamond inclusions from Jagersfontein (22.3 ± 0.8 GPa and 16.9 ± 1 GPa), Monastery (15.7 ± 7 GPa) and Kankan (15.5 ± 0.2 GPa) show that these inclusions originated from the mantle transition zone. Thus, this new single-phase method for pressure estimation has unmatched potential to map the depth of formation of garnets with majoritic chemistries that occur as diamond inclusions in all parageneses except those that include Ca silicate perovskite. The derived pressures confirm the sub-lithospheric origin of eclogitic majoritic diamond inclusions, and thus provide a more comprehensive picture of the important role of storage of oceanic lithosphere in the transition zone.  相似文献   

4.
Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (∼1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most (D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ‘‘out-of-context” zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values from phenocryst/matrix pairs yields, but yield LREE-depleted magmas when experimentally determined D values are used. We infer that experimentally measured Dzircon/melt values represent disequilibrium partitioning resulting from rapid zircon growth during short laboratory timescales. Rapid growth causes development of observed diffusive boundary layers in the melt adjacent to zircon crystals. D values from phenocryst/matrix pairs are therefore recommended for petrogenetic modeling.  相似文献   

5.
As a complement to our efforts to update and revise the thermodynamic basis for predicting garnet-melt trace element partitioning using lattice-strain theory (van Westrenen and Draper in Contrib Mineral Petrol, this issue), we have performed detailed statistical evaluations of possible correlations between intensive and extensive variables and experimentally determined garnet-melt partitioning values for trivalent cations (rare earth elements, Y, and Sc) entering the dodecahedral garnet X-site. We applied these evaluations to a database containing over 300 partition coefficient determinations, compiled both from literature values and from our own work designed in part to expand that database. Available data include partitioning measurements in ultramafic to basaltic to intermediate bulk compositions, and recent studies in Fe-rich systems relevant to extraterrestrial petrogenesis, at pressures sufficiently high such that a significant component of majorite, the high-pressure form of garnet, is present. Through the application of lattice-strain theory, we obtained best-fit values for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). Resulting values of E, D 0, and r 0 were used in multiple linear regressions involving sixteen variables that reflect the possible influence of garnet composition and stoichiometry, melt composition and structure, major-element partitioning, pressure, and temperature. We find no statistically significant correlations between fitted r 0 and E values and any combination of variables. However, a highly robust correlation between fitted D 0 and garnet-melt Fe–Mg exchange and D Mg is identified. The identification of more explicit melt-compositional influence is a first for this type of predictive modeling. We combine this statistically-derived expression for predicting D 0 with the new expressions for predicting E and r 0 outlined in the first of our pair of companion papers into an updated set of formulae that use easy-to-measure quantities (e.g. garnet composition, pressure, temperature) to predict variations in E, r 0, and D 0. These values are used in turn to calculate D values for those garnets. The updated model substantially improves upon a previous model (van Westrenen et al. in Contrib Mineral Petrol 142:219–234, 2001), and accounts well for trivalent cation partitioning in nominally anhydrous systems up to at least 15 GPa, including for eclogitic bulk compositions and for Fe-rich systems appropriate to magmagenesis on the Moon and Mars. The new model is slightly less successful in predicting partitioning with strongly majoritic garnets, although the mismatch is much less than with the original 2001 model. Although it also improves upon the 2001 model in predicting partitioning in hydrous systems, the mismatch between model and observation is still unacceptably large. The same statistical tools were applied in an attempt to predict tetravalent partitioning as well, because lattice-strain based techniques are not applicable to such partitioning. However, no statistically significant predictive relationships emerged from that effort. Our analyses show that future efforts should focus on filling the gap in partitioning data between ∼10 and 25 GPa to evaluate more closely the gradual transition of garnet to majorite, and on systematically expanding the hydrous partitioning database to allow extension of our model to water-bearing systems.  相似文献   

6.
Northeast Africa 003 (NEA 003) is a lunar meteorite found as a two paired stones (6 and 118 g) in Libya, 2000 and 2001. The main portion (∼75 vol%) of the 118 g meteorite, used for this study, (NEA 003-A) consists of mare-basalt and a smaller adjacent portion (∼25 vol%) is a basaltic breccia (NEA 003-B). NEA 003-A has a coarse-grained magmatic texture consisting mainly of olivine, pyroxene and plagioclase. The late-stage mineral association is composed mainly of elongated plagioclase, ilmenite, troilite, fayalite, Si-K-rich glass, apatite, and a rare SiO2 phase. Other accessory minerals include ulvöspinel, chromite, and trace Fe-Ni metal. Olivine and pyroxene contain shock-induced fractures, and plagioclase is completely converted into maskelynite.The Fe/Mn values of the whole rock, olivines and pyroxenes, and the bulk-rock oxygen isotopic composition provide evidence for the lunar origin of NEA 003-A meteorite. This is further supported by the presence of Fe-Ni metal and the anhydrous mineral association.NEA 003-A is geochemically and petrographically distinct from previously described mare-basalt meteorites and is not paired with any of them. The petrography and major element composition of NEA 003-A is similar to the composition of low-Ti olivine mare basalts from Apollo 12 and olivine-normative basalts from Apollo 15. The NEA 003-A meteorite shows obvious geochemical similarities in trace elements contents with Apollo 15 olivine-normative basalts and could represent a yet unknown geochemically primitive member of the olivine-normative basalt series. The meteorite is depleted in rare earth elements (REE) and incompatible trace elements indicating a primitive character of the parental magma. The bulk-rock chemical composition demonstrates that the parent melt of NEA 003-A was not contaminated with KREEP components as a result of magma mixing or assimilation processes. Results of crystallization modelling and low minimum cooling rate estimates (∼0.07 °C/h) suggest that the parent melt of NEA 003-A crystallized in the lower part of a lava flow containing cumulate olivine (∼10%) and was probably derived from more primitive picritic magma by fractional crystallization processes.Sm-Nd dating yields an age of 3.09 ± 0.06 Ga which corresponds to the period of lower Eratosthenian lunar volcanic activity, and the near-chondritic εNd value of −0.4 ± 0.3 indicates that the meteorite could be derived from a slightly enriched mantle source similar to the Apollo 15 green glasses. Ar-Ar step release results are inconsistent with Sm-Nd ages suggesting that NEA 003-A was exposed to one or more impact events. The most extensive event took place at 1.8 Ga and the shock intensity was likely between 28 and 45 GPa. The absence of solar Ar suggests that NEA 003-A has not been directly exposed at the lunar surface but the cosmic ray exposure age of 209 ± 6 Ma suggests that NEA 003-A resided in the upper regolith for part of its history.  相似文献   

7.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   

8.
To understand partitioning of hydrogen between hydrous basaltic and andesitic liquids and coexisting clinopyroxene and garnet, experiments using a mid-ocean ridge basalt (MORB) + 6 wt.% H2O were conducted at 3 GPa and 1,150–1,325°C. These included both isothermal and controlled cooling rate crystallization experiments, as crystals from the former were too small for ion microprobe (SIMS) analyses. Three runs at lower bulk water content are also reported. H2O was measured in minerals by SIMS and in glasses by SIMS, Fourier Transform infrared spectroscopy (FTIR), and from oxide totals of electron microprobe (EMP) analyses. At 3 GPa, the liquidus for MORB with 6 wt.% H2O is between 1,300 and 1,325°C. In the temperature interval investigated, the melt proportion varies from 100 to 45% and the modes of garnet and clinopyroxene are nearly equal. Liquid composition varies from basaltic to andesitic. The crystallization experiments starting from above the liquidus failed to nucleate garnets, but those starting from below the liquidus crystallized both garnet and clinopyroxene. SIMS analyses of glasses with >7 wt.% H2O yield spuriously low concentrations, perhaps owing to hydrogen degassing in the ultra-high vacuum of the ion microprobe sample chamber. FTIR and EMP analyses show that the glasses have 3.4 to 11.9 wt.% water, whilst SIMS analyses indicate that clinopyroxenes have 1,340–2,330 ppm and garnets have 98–209 ppm H2O. D H cpx−gt is 11 ± 3, D H cpx−melt is 0.023 ± 0.005 and D H gt−melt is 0.0018 ± 0.0006. Most garnet/melt pairs have low values of D H gt−melt, but D H gt−melt increases with TiO2 in the garnet. As also found by previous studies, values of D H cpx−melt increase with Al2O3 of the crystal. For garnet pyroxenite, estimated values of D H pyroxenite−melt decrease from 0.015 at 2.5 GPa to 0.0089 at 5 GPa. Hydration will increase the depth interval between pyroxenite and peridotite solidi for mantle upwelling beneath ridges or oceanic islands. This is partly because the greater pyroxene/olivine ratio in pyroxenite will tend to enhance the H2O concentration of pyroxenite, assuming that neighboring pyroxenite and peridotite bodies have similar H2O in their pyroxenes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

10.
In order to fully assess the role of rutile in fractionation of Nb/Ta during partial melting of hydrous metabasalt, we have measured rutile - felsic melt partition coefficients (D values) for Nb and Ta with tonalitic to trondhjemitic compositions at 1.5-3.5 GPa, 900-1350 °C and ∼5.0-20 wt% H2O. DNb, DTa and DNb/DTa range from 17 ± 1 to 246 ± 13, 34 ± 2 to 232 ± 25 and 0.51 ± 0.04 to 1.06 ± 0.13, respectively. For the compositions investigated, melt composition appears to have no observable effect on the partitioning; the effect of pressure is also slight; whereas temperature and H2O have marked effects. DNb, DTa and DNb/DTa increase with decreasing temperature and H2O content, showing a reversal of DNb/DTa from <1.0 to >1.0. Using the data that approached equilibrium and obeyed Henry’s law, expressions describing the dependences of DNb, DTa and DNb/DTa on temperature, pressure and melt H2O content were obtained:
(1)  相似文献   

11.
Near liquidus experiments on peridotite and other olivine normative compositions from 1.7 to 6 GPa confirm the applicability of exchange-based empirical models of Ni and Co partitioning between olivine and silicate liquids with compositions close to the liquidus of peridotite. Given that most estimates of lunar bulk composition are peridotitic, the partitioning models thus lend themselves to calculation of olivine compositions produced during the early stages of magma ocean crystallization. Calculation of olivine compositions produced by fractional crystallization of a model lunar magma ocean, initially 700 km deep, reveals a prominent maximum in Ni concentration versus fraction crystallized or Mg’ (molar MgO/(MgO + FeO)), but a pattern of monotonically increasing Co concentration. These patterns qualitatively match the puzzling patterns of Ni and Co concentrations observed in lunar rocks in which forsteritic olivines in magnesian suite cumulates have lower Ni and Co abundances than do less magnesian olivines from low-Ti mare basalts, and olivines from the ferroan anorthosite suite (FAS) have lower Ni, but similar Co to mare basalt olivines.The Ni and Co abundances in olivines from the magnesian suite cumulates can be reconciled in terms of fractional crystallization of a deep magma ocean which initially produces a basal dunite comprised of the hottest and most magnesian olivine overlain by an olivine-orthopyroxene (harzburgite) layer that is in turn overlain by an upper zone of plagioclase-bearing cumulates. The ultramafic portion of the cumulate pile overturns sending the denser harzburgite layer, which later becomes a portion of the green glass source region, to the bottom of the cumulate pile with Ni- and Co-rich olivine. Meanwhile, the less dense, but hottest, most magnesian olivines with much lower Ni and Co abundances are transported upward to the base of the plagioclase-bearing cumulates where subsequent heat transfer leads to melting of mixtures of primary dunite, norite, and gabbronorite with KREEP (a K-REE-P enriched component widely believed to be derived from the very latest stage magma ocean liquid). These hybrid melts have Al2O3, Ni, and Co abundances and Mg’ appropriate for parent magmas of the magnesian suite. Ni and Co abundances in the FAS are consistent with either direct crystallization from the magma ocean or crystallization of melts of primary dunite-norite mixtures without KREEP.  相似文献   

12.
Geochemical and 40Ar/39Ar data on nine impact glasses from the Apollo 14, 16, and 17 landing sites indicate at least seven distinct impact events with ages ∼800 Ma. Rock fragments analyzed by Barra et al. [Barra F., Swindle T. D., Korotev R. L., Jolliff B. L., Zeigler R. A., and Olsen E. (2006) 40Ar-39Ar dating of Apollo 12 regolith: implications for the age of Copernicus and the source of nonmare materials, Geochim. Cosmochim. Acta,70, 6016-6031] from the Apollo 12 landing site and some Apollo 12 spherules reported by Levine et al. [Levine J., Becker T. A., Muller R. A., Renne P. R. (2005) 40Ar/39Ar dating of Apollo 12 impact spherules, Geophys. Res. Let., 32, L15201, doi: 10.1029/2005GL022874.] show ∼800 Ma ages, close to the accepted age of the Copernicus event, 800 ± 15 Ma [Bogard D. D., Garrison D. H., Shih C. Y., and Nyquist L. E. (1994) 39Ar-40Ar dating of two lunar granites: The age of Copernicus, Geochim. Cosmochim. Acta, 58, 3093-3100]. These Apollo 12 samples are thought to have been affected by material from the Copernicus event since there is a Copernicus ray going through the Apollo 12 landing site. When all of these data are viewed collectively, including an Apollo 16 glass bomb [Borchardt R., Stöffler D., Spettel B., Palme H. and Wänke H. (1986) Composition, structure, and age of the Apollo 16 subregolith basement as deduced from the chemistry of post-Imbrium melt bombs. In Proceedings, 17th Lunar and Planetary Science Conference, pp. E43-E54], and in the context of diverse compositional range and sample location, there is a suggestion that there may have been a transient increase in the global lunar impact flux at ∼800 Ma. Therefore, the Copernicus impact event could have been one of many. If correct, there should be evidence for this increased impact flux around 800 Ma ago in the age statistics of terrestrial impact samples.  相似文献   

13.
We have measured liquid Fe metal-liquid silicate partitioning (Di) of tellurium, selenium, and sulfur over a range of pressure, temperature, and oxygen fugacity (1-19 GPa, 2023-2693 K, fO2 −0.4 to −5.5 log units relative to the iron-wüstite buffer) to better assess the role of metallic melts in fractionating these elements during mantle melting and early Earth evolution. We find that metal-silicate partitioning of all three elements decreases with falling FeO activity in the silicate melt, and that the addition of 5-10 wt% S in the metal phase results in a 3-fold enhancement of both DTe and DSe. In general, Te, Se, and S all become more siderophile with increasing pressure, and less siderophile with increasing temperature, in agreement with previous work. In all sulfur-bearing experiments, DTe is greater than DSe or DS, with the latter two being similar over a range of P and T. Parameterized results are used to estimate metal-silicate partitioning at the base of a magma ocean which deepens as accretion progresses, with the equilibration temperature fixed at the peridotite liquidus. We show that during accretion, Te behaves like a highly siderophile element, with expected core/mantle partitioning of >105, in contrast to the observed core/mantle ratio of ∼100. Less extreme differences are observed for Se and S, which yielded core/mantle partitioning 100- to 10 times higher, respectively, than the observed value. Addition of ∼0.5 wt% of a meteorite component (H, EH or EL ordinary chondrite) is sufficient to raise mantle abundances to their current level and erase the original interelement fractionation of metal-silicate equilibrium.  相似文献   

14.
15.
The lunar meteorites Northwest Africa (NWA) 3163, 4881, and 4483 are paired stones classified as granulitic breccias. At 2.4 kg, these three stones constitute one of the largest known lunar meteorite masses. Here we describe the petrography, mineralogy, and chemistry of NWA 3163, 4881, and 4483, and present 40Ar-39Ar data for two of the meteorites. Two-pyroxene thermometry indicates that the rocks equilibrated at 1050 ± 50 °C, which represents the high-temperature, low-pressure event that generated their characteristic recrystallization textures and reset their Ar systematics. Stepped-heating, in situ infrared laser microprobe 40Ar-39Ar geochronology yields a mean age of 3327 ± 29 Ma for NWA 3163, and a more disturbed release spectrum for NWA 4881. NWA 4881 shows an upward-trending pattern, suggesting that it may have had a 40Ar-39Ar age of >3.0 Ga, but that it was partially reset at ∼2.6 Ga. NWA 3163 et al. exhibit shock effects, including maskelynitized plagioclase, shock veins, and melt pockets, which are absent in the Apollo granulitic breccias. Although the Apollo and meteorite samples are texturally similar and have comparable bulk compositions and equilibration temperatures, their trace and siderophile element contents point to distinct parental lithologies derived from different regions of the Moon. Based on mineralogical and geochemical differences between the Apollo and meteorite samples, we conclude that the parent rock(s) of the paired NWA meteorites came from an area outside the Imbrium region and that they underwent high-temperature (granulite event) metamorphism long after the Late Heavy Bombardment.  相似文献   

16.
Roger H. Mitchell   《Lithos》2004,76(1-4):551-564
Liquidus and sub-liquidus phase relationships are reported for melts formed from an aphanitic kimberlite composition crystallized at 5–12 GPa and 900–1400 °C. The liquidus phase over the pressure range investigated is forsteritic olivine. This is followed with decreasing temperature by olivine plus garnet as the initial sub-liquidus solid phase assemblage. Supra-solidus assemblages consist of olivine+garnet+clinopyroxene+Mg-ilmenite+liquid at 5–7 GPa or olivine+garnet+clinopyroxene+hematite–ilmenite solid solutions (+/−perovskite)+liquid at 8–12 GPa. Phlogopite forms as a near-solidus phase only at 900 °C and 6 GPa. Orthopyroxene does not form at any temperature and pressure. All garnets formed at 6–7 GPa are Ti-rich almandine–grossular–pyrope solid solutions and not Cr-pyrope, whereas garnets formed above 8 GPa are Ti- and Fe3+-rich and have no natural counterparts. Quenched liquids are represented by magnesite at 10–12 GPa and Mg–Ca-carbonates at lower pressures. In addition to forming discrete crystals, Mg-ilmenite and hematite–ilmenite solid solutions occur as lamellar intergrowths that are identical in texture to naturally occurring intergrowths. Mg-ilmenite compositions at 6–7 GPa are similar to those of the natural occurrences, whereas clinopyroxenes are richer in Ca. The effects of graphite versus platinum capsules on the oxygen fugacity of the experimental charges and the composition of the olivine, clinopyroxene, Fe–Ti-oxides and garnets formed are described. These experimental data are interpreted to indicate that kimberlite magmas are unlikely to be formed by very small degrees of partial melting of a simple homogeneous carbonated garnet lherzolite mantle. It is proposed that kimberlite magmas form by extensive partial melting of metasomatized mantle, i.e. mineralogically complex carbonate-bearing veins in a lherzolitic/harzburgitic substrate, and that lamellar ilmenite–clinopyroxene intergrowths represent the products of non-equilibrium growth in kimberlite magma.  相似文献   

17.
We determined the solubility limit of Pt in molten haplo-basalt (1 atm anorthite-diopside eutectic composition) in piston-cylinder and multi-anvil experiments at pressures between 0.5 and 14 GPa and temperatures from 1698 to 2223 K. Experiments were internally buffered at ∼IW + 1. Pt concentrations in quenched-glass samples were measured by laser-ablation inductively coupled-plasma mass spectrometry (LA-ICPMS). This technique allows detection of small-scale heterogeneities in the run products while supplying three-dimensional information about the distribution of Pt in the glass samples. Analytical variations in 195Pt indicate that all experiments contain Pt nanonuggets after quenching. Averages of multiple, time-integrated spot analyses (corresponding to bulk analyses) typically have large standard deviations, and calculated Pt solubilities in silicate melt exhibit no statistically significant covariance with temperature or pressure. In contrast, averages of minimum 195Pt signal levels show less inter-spot variation, and solubility shows significant covariance with pressure and temperature. We interpret these results to mean that nanonuggets are not quench particles, that is, they were not dissolved in the silicate melt, but were part of the equilibrium metal assemblage at run conditions. We assume that the average of minimum measured Pt abundances in multiple probe spots is representative of the actual solubility. The metal/silicate partition coefficients (Dmet/sil) is the inverse of solubility, and we parameterize Dmet/sil in the data set by multivariate regression. The statistically robust regression shows that increasing both pressure and temperature causes Dmet/silto decrease, that is, Pt becomes more soluble in silicate melt. Dmet/sil decreases by less than an order of magnitude at constant temperature from 1 to 14 GPa, whereas isobaric increase in temperature produces a more dramatic effect, with Dmet/sil decreasing by more than one order of magnitude between 1623 and 2223 K. The Pt abundance in the Earth’s mantle requires that Dmet/sil is ∼1000 assuming core-mantle equilibration. Geochemical models for core formation in Earth based on moderately and slightly siderophile elements are generally consistent with equilibrium metal segregation at conditions generally in the range of 20-60 GPa and 2000-4000 K. Model extrapolations to these conditions show that the Pt abundance of the mantle can only be matched if oxygen fugacity is high (∼IW) and if Pt mixes ideally in molten iron, both very unlikely conditions. For more realistic values of oxygen fugacity (∼IW − 2) and experimentally-based constraints on non-ideal mixing, models show that Dmet/sil would be several orders of magnitude too high even at the most favorable conditions of pressure and temperature. These results suggest that the mantle Pt budget, and by implication other highly siderophile elements, was added by late addition of a ‘late veneer’ phase to the accreting proto-Earth.  相似文献   

18.
High-pressure liquids in the MgO-SiO2-H2O (MSH) system have been investigated at 11 and 13.5 GPa and between 1000 and 1350 °C. A bulk composition more magnesian than the tie-line forsterite-H2O was employed for the study. Rocking multi-anvil experiments were combined with a diamond trap set-up. After termination of the experiments, the liquid trapped in the diamond layer was analysed by laser ablation ICP-MS using the ‘freezing’ technique. At 11 GPa, liquids coexist with one or two of phase A, clinohumite, chondrodite, and forsterite. A marked discontinuity in the evolution of liquid compositions near 1100 °C is observed at 11 GPa. A step of ∼13 wt% H2O and 13 wt% MgO is interpreted to result from overstepping the fluid-saturated solidus reaction mass balanced to 1.00(18) phase A + 1.07(4) fluid = 0.63(15) chondrodite + 1.44(2) melt. At 13.5 GPa liquids coexist with one or two of hydrous wadsleyite, clinohumite, superhydrous B, phase B, and forsterite. The discontinuity in liquid composition is no longer present, indicating that the second critical endpoint of the solidus has been overstepped. Thus, hydrous melts in the Mg-rich part of the MSH system (molar bulk Mg/Si > 2) are chemically distinct from aqueous fluids at pressure up to 11 GPa. Convergence of fluid and melt compositions along the solidus resulting in a supercritical liquid occurs between 11 and 13.5 GPa, at which pressure the entire MSH system becomes supercritical.  相似文献   

19.
The composition and evolution of a metallic planetary core is determined by the behavior with pressure of the eutectic and the liquidus on the Fe-rich side of the Fe-FeS eutectic. New experiments at 6 GPa presented here, along with existing experimental data, inform a thermodynamic model for this liquidus from 1 bar to at least 10 GPa. Fe-FeS has a eutectic that becomes more Fe-rich but remains constant in T up to 6 GPa. The 1 bar, 3 GPa, and 6 GPa liquidi all cross at a pivot point at 1640 ± 5 K and FeS37 ± 0.5. This liquid/crystalline metal equilibrium is T-x-fixed and pressure independent through 6 GPa. Models of the 1 bar through 10 GPa experimental liquidi show that with increasing P there is an increase in the T separation between the liquidus and the crest of the metastable two-liquid solvus. The solvus crest decreases in T with increasing P. The model accurately reproduces all the experimental liquidi from 1 bar to 10 GPa, as well as reproducing the 0-6 GPa pivot point. The 14 GPa experimental liquidus ( [Chen et al., 2008a] and Chen et al., 2008b) deviates sharply from the lower pressure trends indicating that the 0-10 GPa model no longer applies to this 14 GPa data.  相似文献   

20.
Analyses of co-existing silicate melt and fluid inclusions, entrapped in quartz crystals in volatile saturated magmatic systems, allowed direct quantitative determination of fluid/melt partition coefficients. Investigations of various granitic systems (peralkaline to peraluminous in composition, log fO2 = NNO−1.7 to NNO+4.5) exsolving fluids with various chlorinities (1-14 mol/kg) allowed us to assess the effect of these variables on the fluid/melt partition coefficients (D). Partition coefficients for Pb, Zn, Ag and Fe show a nearly linear increase with the chlorinity of these fluid (DPb ∼ 6 ∗ mCl, DZn ∼ 8 ∗ mCl, DAg ∼ 4 ∗ mCl, DFe ∼ 1.4 ∗ mCl, where mCl is the molinity of Cl). This suggests that these metals are dissolved primarily as Cl-complexes and neither oxygen fugacity nor the composition of the melt affects significantly their fluid/melt partitioning. By contrast, partition coefficients for Mo, B, As, Sb and Bi are highest in low salinity (1-2 mol/kg Cl) fluids with maximum values of DMo ∼ 20, DB ∼ 15, DAs ∼ 13, DSb ∼ 8, DBi ∼ 15 indicating dissolution as non-chloride (e.g., hydroxy) complexes. Fluid/melt partition coefficients of copper are highly variable, but highest between vapor like fluids and silicate melt (DCu ? 2700), indicating an important role for ligands other than Cl. Partition coefficients for W generally increase with increasing chlorinity, but are exceptionally low in some of the studied brines which may indicate an effect of other parameters. Fluid/melt partition coefficients of Sn show a high variability but likely increase with the chlorinity of the fluid (DSn = 0.3-42, DW = 0.8-60), and decrease with decreasing oxygen fugacity or melt peraluminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号