首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubility experiments were performed on nanocrystalline scorodite and amorphous ferric arsenate. Nanocrystalline scorodite occurs as stubby prismatic crystals measuring about 50 nm and having a specific surface area of 39.88 ± 0.07 m2/g whereas ferric arsenate is amorphous and occurs as aggregated clusters measuring about 50–100 nm with a specific surface area of 17.95 ± 0.19 m2/g. Similar to its crystalline counterpart, nanocrystalline scorodite has a solubility of about 0.25 mg/L at around pH 3–4 but has increased solubilities at low and high pH (i.e. <2 and >6). Nanocrystalline scorodite dissolves incongruently at about pH > 2.5 whereas ferric arsenate dissolution is incongruent at all the pH ranges tested (pH 2–5). It appears that the solubility of scorodite is not influenced by particle size. The dissolution rate of nanocrystalline scorodite is 2.64 × 10−10 mol m−2 s−1 at pH 1 and 3.25 × 10−11 mol m−2 s−1 at pH 2. These rates are 3–4 orders of magnitude slower than the oxidative dissolution of pyrite and 5 orders of magnitude slower than that of arsenopyrite. Ferric arsenate dissolution rates range from 6.14 × 10−9 mol m−2 s−1 at pH 2 to 1.66 × 10−9 mol m−2 s−1 at pH 5. Among the common As minerals, scorodite has the lowest solubility and dissolution rate. Whereas ferric arsenate is not a suitable compound for As control in mine effluents, nanocrystalline scorodite that can be easily precipitated at ambient pressure and temperature conditions would be satisfactory in meeting the regulatory guidelines at pH 3–4.  相似文献   

2.
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 μm were dissolved in pH 3, HCl at 25 °C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 × 10−10 molfeldspar m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 × 10−10 molfeldspar m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 molfeldspar g−1 s−1. For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 × 10−12 molbiotite m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 × 10−12 molbiotite g−1 s−1. For all normalising terms rates varied significantly (p ? 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over which they would change significantly.  相似文献   

3.
Located in the uplands of the Valley and Ridge physiographic province of Pennsylvania, the Susquehanna/Shale Hills Critical Zone Observatory (SSHO) is a tectonically quiescent, first-order catchment developed on shales of the Silurian Rose Hill Formation. We used soil cores augered at the highest point of the watershed and along a subsurface water flowline on a planar hillslope to investigate mineral transformations and physical/chemical weathering fluxes. About 25 m of bedrock was also drilled to estimate parent composition. Depletion of carbonate at tens of meters of depth in bedrock may delineate a deep carbonate-weathering front. Overlying this, extending from ∼6 m below the bedrock-soil interface up into the soil, is the feldspar dissolution front. In the soils, depletion profiles for K, Mg, Si, Fe, and Al relative to the bedrock define the illite and chlorite reaction fronts. When combined with a cosmogenic nuclide-derived erosion rate on watershed sediments, these depletion profiles are consistent with dissolution rates that are several orders of magnitudes slower for chlorite (1-5 × 10−17 mol m−2 s−1) and illite (2-9 × 10−17 mol m−2 s−1) than observed in the laboratory. Mineral reactions result in formation of vermiculite, hydroxy-interlayered vermiculite, and minor kaolinite. During weathering, exchangeable divalent cations are replaced by Al as soil pH decreases.The losses of Mg and K in the soils occur largely as solute fluxes; in contrast, losses of Al and Fe are mostly as downslope transport of fine particles. Physical erosion of bulk soils also occurs: results from a steady-state model demonstrate that physical erosion accounts for about half of the total denudation at the ridgetop and midslope positions. Chemical weathering losses of Mg, Na, and K are higher in the upslope positions likely because of the higher degree of chemical undersaturation in porewaters. Chemical weathering slows down in the valley floor and Al and Si even show net accumulation. The simplest model for the hillslope that is consistent with all observations is a steady-state, clay weathering-limited system where soil production rates decrease with increasing soil thickness.  相似文献   

4.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   

5.
To investigate the possible variations of Rn concentration in crystalline rocks as a function of flow conditions, a field study was carried out of a fractured aquifer in granite. The method is based on the in situ measurement of Rn in groundwater, aquifer tests for the determination of hydraulic characteristics of the aquifer and laboratory measurement of Rn exhalation rate from rocks. A simple crack model that simulates the Rn concentration in waters circulating in a fracture intersecting a borehole was also tested. The Rn concentrations in groundwaters from boreholes of the study site ranged from 192 to 1597 Bq L−1. The Rn exhalation rates of selected samples of granite and micaschist were determined from laboratory experiments. The results yielded fluxes varying from 0.5 to 1.3 mBq m−2 s−1 in granite and from 0.5 to 0.9 mBq m−2 s−1 in micaschists. Pumping tests were performed in the studied boreholes to estimate the transmissivity and calculate the equivalent hydraulic aperture of the fractures. Transmissivities ranged from 10−5 to 10−3 m2 s−1. Using the cubic law, hydraulic equivalent fracture apertures were calculated to be in the range of 0.5–2.3 mm.  相似文献   

6.
We have performed holographic interferometry measurements of the dissolution of the (0 1 0) plane of a cleaved gypsum single crystal in pure water. These experiments have provided the value of the dissolution rate constant k of gypsum in water and the value of the interdiffusion coefficient D of its aqueous species in water. D is 1.0 × 10−9 m2 s−1, a value close to the theoretical value generally used in dissolution studies. k is 4 × 10−5 mol m−2 s−1. It directly characterizes the microscopic transfer rate at the solid-liquid interface, and is not an averaged value deduced from quantities measured far from the surface as in macroscopic dissolution experiments. It is found to be two times lower than the value obtained from macroscopic experiments.  相似文献   

7.
Dissolution experiments on a serpentinite were performed at 70 °C, 0.1 MPa, in H2SO4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 °C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 × 10−10 mole m−2 s−1 to 4.2 × 10−9 mole m−2 s−1. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH4- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 °C using 100 g L−1 NaCl aqueous solutions. The corresponding amount of CO2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 × 10−11 mole m−2 s−1 to 1.3 × 10−10 mole m−2 s−1) is lower than that obtained at 0.1 MPa and 70 °C but it is related to pH values much higher (3.3-4.4) than that (−0.65) calculated for the H2SO4 solution.Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i) the log rate [mole m−2 s−1] value of −12.08 ± 0.16 (1σ), as representative of the neutral dissolution mechanism at 25 °C and (ii) the following relationship for the acidic dissolution mechanism at 25 °C:
log rate=-0.45(±0.09)×pH-10.01(±0.30).  相似文献   

8.
Do organic ligands affect calcite dissolution rates?   总被引:1,自引:0,他引:1  
Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA4−, succinate, d-glucosaminate, l-glutamate, d-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of <0.05 mol/kg of these organic anions changes calcite dissolution rates by less than a factor of 2.5 with the exception of citrate and EDTA4−. The presence of 0.05 mol/kg citrate and EDTA4− increases calcite dissolution rates by as much as a factor of 35 and 500, respectively, compared to rates in organic anion-free solutions. Further calcite dissolution experiments were performed in the presence of organic polymers similar to bacterial exudates, cell exopolysaccharides, and analogs of microbial cell envelopes: alginate, lichen extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.  相似文献   

9.
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction.Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 Å, forming “altered biotite”. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 × 10−14 mol biotite m−2 s−1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 μm resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone.Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 × 10−13 mol hornblende m−2 s−1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface.  相似文献   

10.
The present study compares the dissolution rates of plagioclase, microcline and biotite/chlorite from a bulk granite to the dissolution rates of the same minerals in mineral-rich fractions that were separated from the granite sample. The dissolution rate of plagioclase is enhanced with time as a result of exposure of its surface sites due to the removal of an iron oxide coating. Removal of the iron coating was slower in the experiment with the bulk granite than in the mineral-rich fractions due to a higher Fe concentration from biotite dissolution. As a result, the increase in plagioclase dissolution rate was initially slower in the experiment with the bulk granite. The measured steady state dissolution rates of both plagioclase (6.2 ± 1.2 × 10−11 mol g−1 s−1) and microcline (1.6 ± 0.3 × 10−11 mol g−1 s−1) were the same in experiments conducted with the plagioclase-rich fraction, the alkali feldspar-rich fraction and the bulk granite.Based on the observed release rates of the major elements, we suggest that the biotite/chlorite-rich fraction dissolved non-congruently under near-equilibrium conditions. In contrast, the biotite and chlorite within the bulk granite sample dissolved congruently under far from equilibrium conditions. These differences result from variations in the degree of saturation of the solutions with respect to both the dissolving biotite/chlorite and to nontronite, which probably was precipitating during dissolution of the biotite and chlorite-rich fraction. Following drying of the bulk granite, the dissolution rate of biotite was significantly enhanced, whereas the dissolution rate of plagioclase decreased.The presence of coatings, wetting and drying cycles and near equilibrium conditions all significantly affect mineral dissolution rates in the field in comparison to the dissolution rate of fully wetted clean minerals under far from equilibrium laboratory conditions. To bridge the gap between the field and the laboratory mineral dissolution rates, these effects on dissolution rate should be further studied.  相似文献   

11.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   

12.
The dissolution rates of natural, well crystallized variscite (AlPO4·2H2O) were determined from the evolution of aqueous Al and P concentrations in closed and open-system mixed-flow reactors at 25 °C and pH from 1.5 to 9.0. Measured dissolution rates decrease with increasing pH, from 6 × 10−16 mol/cm2/s at pH 1.5 to 5 × 10−17 mol/cm2/s at pH 5.89, and then increase with increasing pH to 4 × 10−16 mol/cm2/s at pH 9.0. Geochemical modeling calculations, performed using measured dissolution rates, indicate that it would take no more than a few weeks or months to equilibrate a mildly acidic, Al and P-free solution with variscite. Hence, variscite can buffer aqueous phosphate concentrations in mildly acidic near surface environments. This conclusion is confirmed by consideration of the compositions of natural waters.  相似文献   

13.
Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, ΔGr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH(150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between ΔGr and R was determined over a free energy range of −150 < ΔGr < −15.6 kJ mol−1. The data define a continuous and highly non-linear, sigmoidal relation between R and ΔGr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by −150 < ΔGr < −70 kJ mol−1, represents an extensive dissolution rate plateau with an average rate . In this free energy range the rates of dissolution are constant and independent of ΔGr, as well as [Si] and [Al]. The free energy range delimited by −70 ? ΔGr ? −25 kJ mol−1, referred to as the ‘transition equilibrium’ region, is characterized by a sharp decrease in dissolution rates with increasing ΔGr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by ΔGr > −25 kJ mol−1, represents the ‘near equilibrium’ region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on ΔGr. The lowest rate measured in this study, R = 6.2 × 10−11 mol m−2 s−1 at ΔGr = −16.3 kJ mol−1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions
R=k1[1-exp(-ngm1)]+k2[1-exp(-g)]m2,  相似文献   

14.
In situ feldspar dissolution rates in an aquifer   总被引:1,自引:0,他引:1  
In situ silicate dissolution rates within the saturated Navajo sandstone, at Black Mesa, Arizona were determined from elemental fluxes in the aquifer. The mass transfer between groundwater and mineral matrix along flow paths was calculated from inverse mass balance modeling. The reaction time is bound by 14C-based travel time. BET surface areas were measured with N2 gas adsorption. Dissolution rates for K-feldspar and plagioclase are 10−19 and 10−16 mol (feldspar) m−2 s−1, respectively, which are ∼105 times slower than laboratory experiment-derived rates under similar pH and temperature but at far from equilibrium conditions. The rates obtained in this study are consistent with the slower field rates found in numerous watershed and soil profile studies. However, these rates are from saturated aquifers, overcoming some concerns on estimated rates from unsaturated systems. The Navajo sandstone is a quartz-sandstone with a relatively simple and well-studied hydrogeology, groundwater geochemistry, and lithology, a large number of groundwater analyses and 14C groundwater ages, groundwater residence times up to ∼37 ky, groundwater pH from ∼8 to 10, and temperature from ∼15 to 35°C.  相似文献   

15.
Copper isotope fractionation in acid mine drainage   总被引:4,自引:0,他引:4  
We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The δ65Cu values (based on 65Cu/63Cu) of enargite (δ65Cu = −0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the range of reported values for terrestrial primary Cu sulfides (−1‰ < δ65Cu < 1‰). These mineral samples show lower δ65Cu values than stream waters (1.38‰ ? δ65Cu ? 1.69‰). The average isotopic fractionation (Δaq-min = δ65Cuaq − δ65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ± 0.14‰ and 1.60 ± 0.14‰ for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ± 0.14‰) and enargite (0.98 ± 0.14‰) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Δaq-mino=-0.57±0.14, where mino refers to the starting mineral) and no apparent fractionation for enargite (Δaq-mino=0.14±0.14). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of δ65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes.  相似文献   

16.
Four porous, glass-dominated rhyolites from Kozushima Island, different in age and extent of weathering, were studied. Because the four rhyolites are homogeneously weathered to considerable depth, and because their initial chemical compositions were equal, the different rock characteristics can provide information about rates of rhyolite dissolution and clay mineral formation over ∼52,000 yr. Because glass surfaces retreat without surface roughening, surface area (measured by Brunauer-Emmett-Teller method; BET) was assumed to be approximately constant over time. The field dissolution rate, as inferred from the rate of loss of Si, was ∼6 × 10−19 mol cm−2 s−1. The estimated clay mineral formation rate was ∼1 × 10−19 mol cm−2 s−1. About 20% of dissolved Si precipitated as clays. In order to investigate the factors affecting the field dissolution rate, dissolution experiments that used powdered and block rhyolite samples were conducted. Under relevant field conditions (20°C and pH 6∼7), the rates were ∼5 × 10−17 and ∼5 × 10−18 mol cm−2 s−1 for powdered rhyolite and blocks, respectively. The dissolution rates obtained in this study decrease in the order powder > block > field. Because all surface areas were directly measured by BET, the differences are not attributable to the errors in surface area. The most plausible explanations of the slower rates are the lower degree of flushing and resultant high-solution saturation states in the pores (both in the field and in the rhyolite blocks used in experiments) plus the formation of alteration/hydrated layers at the glass surface.  相似文献   

17.
Transformation of vermiculite to hydroxy-interlayered vermiculites (HIV) significantly modifies the physicochemical properties of the original mineral. HIV is a common phase in acid soils, nevertheless its formation remains poorly understood. The main goal of this paper was to clarify the kinetics and process of interlayer aluminization of pure vermiculite using an experimental design. For this purpose, we monitored the dissolution of Na-saturated vermiculite in dilute HCL at pH 2.7, at 50 °C for 672 h in stirred flow-through reactors. Both reacted samples at different dissolution steps, and the leaching of elements, were investigated. The main result was a rapid change to hydroxy-interlayered vermiculite, with a decrease in CEC and a progressive displacement of d(0 0 1) reflection near 1.4 nm after K saturation, resulting from formation of hydroxy-interlayer material. Vermiculite was found to dissolve non-stoichiometrically for 500 h; after that, the release rate for Si, Mg and Al became stoichiometric with respect to vermiculite chemistry. By contrast, Fe sustained non-stoichiometric release throughout the whole experiment. At the steady state, i.e., after 500 h, a dissolution rate of 8.8 ± 0.1 × 10−11 mol vermiculite m−2 s−1 was found with respect to Si. Both Al and Fe precipitated in the interlayer space, and their amounts calculated at the end of the experiment were 3.74 × 10−4 mol g−1 of vermiculite for Al and 8.74 × 10−5 for Fe. The rate of interlayer aluminization increased for 60 h and then regularly decreased. Al-interlayering stopped after 288 h, but Fe still precipitated in the interlayer space.A comparison with the same mineral incubated for three years in acid soils revealed that the reaction was proton-promoted. The same pattern of CEC decrease and interlayer aluminization was observed, but the kinetics were slower due to soil environmental conditions.  相似文献   

18.
The soils of the Atacama Desert in northern Chile have long been known to contain large quantities of unusual salts, yet the processes that form these soils are not yet fully understood. We examined the morphology and geochemistry of soils on post-Miocene fans and stream terraces along a south-to-north (27° to 24° S) rainfall transect that spans the arid to hyperarid transition (21 to ∼2 mm rain y−1). Landform ages are ? 2 My based on cosmogenic radionuclide concentrations in surface boulders, and Ar isotopes in interbedded volcanic ash deposits near the driest site indicate a maximum age of 2.1 My. A chemical mass balance analysis that explicitly accounts for atmospheric additions was used to quantify net changes in mass and volume as a function of rainfall. In the arid (21 mm rain y−1) soil, total mass loss to weathering of silicate alluvium and dust (−1030 kg m−2) is offset by net addition of salts (+170 kg m−2). The most hyperarid soil has accumulated 830 kg m−2 of atmospheric salts (including 260 kg sulfate m−2 and 90 kg chloride m−2), resulting in unusually high volumetric expansion (120%) for a soil of this age. The composition of both airborne particles and atmospheric deposition in passive traps indicates that the geochemistry of the driest soil reflects accumulated atmospheric influxes coupled with limited in-soil chemical transformation and loss. Long-term rates of atmospheric solute addition were derived from the ion inventories in the driest soil, divided by the landform age, and compared to measured contemporary rates. With decreasing rainfall, the soil salt inventories increase, and the retained salts are both more soluble and present at shallower depths. All soils generally exhibit vertical variation in their chemistry, suggesting slow and stochastic downward water movement, and greater climate variability over the past 2 My than is reflected in recent (∼100 y) rainfall averages. The geochemistry of these soils shows that the transition from arid to hyperarid rainfall levels marks a fundamental geochemical threshold: in wetter soils, the rate and character of chemical weathering results in net mass loss and associated volumetric collapse after 105 to 106 years, while continuous accumulation of atmospheric solutes in hyperarid soils over similar timescales results in dramatic volumetric expansion. The specific geochemistry of hyperarid soils is a function of atmospheric sources, and is expected to vary accordingly at other hyperarid sites. This work identifies key processes in hyperarid soil formation that are likely to be independent of location, and suggests that analogous processes may occur on Mars.  相似文献   

19.
In situ Atomic Force Microscopy, AFM, experiments have been carried out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated on calcite surfaces and, subsequently, the overall dissolution rates: i.e., from 10−11.75 mol cm−2 s−1 (in deionized water) up to 10−10.54 mol cm−2 s−1 (in 2.8 M MgSO4). Such an effect is concentration-dependent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play a critical role in the chemical weathering of carbonate rocks in nature as well as in the decay of carbonate stone in buildings and statuary.  相似文献   

20.
Globally arsenic (As) is a ubiquitous trace element derived from the natural weathering of As-bearing rock. With the onset of reducing conditions, the prevalence of aqueous As(III) may be intensified through biotic and abiotic processes. Here we evaluate the stability of arsenic bearing Ca–Fe hydroxide phases collected from exposed tailings at Ketza River mine, Yukon, Canada, during the reductive dissolution of both acid treated and untreated samples by Shewanella putrefaciens 200R and Shewanella sp. ANA-3. Samples were acid treated in order to remove Ca–Fe oxide coatings and evaluate the influence of these coatings on the rates of microbial Fe(III) and As(V) reduction. Environmental scanning electron microscope (ESEM) micrographs of the solid phase show significant differences in the chemistry and physical morphology of the material by the bacteria over time and are especially evident in the acid treated samples. Moreover, while solution chemistry showed similar As(III) respiration rates of the inoculated acid treated samples for both ANA3 and 200R at ~ 1.1 × 10−6 μM·s− 1·m− 2, the Fe(II) respiration rates differed at 1.4 × 10− 7 and 9.5 × 10− 8 μM·s− 1·m−2 respectively, thus suggesting strain specific metal reduction metabolic pathways Additionally, the enhanced metal reduction observed in the acid treated inoculated samples suggests that the presence of the Ca–Fe hydroxide phase in the untreated samples acted as a barrier, inhibiting the bacteria from accessing the metals. This has implications for increased mobilization of metals by metal reducing bacteria within areas of increased acidity, such as acid mine drainage sites and industrial tailings ponds that can come into contact with surface and ground water sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号