首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The S K and L-edge x-ray absorption near-edge structures (XANES) of low bornite, cubanite, chalcocite, covellite, enargite and tetrahedrite have been measured with synchrotron radiation. The near-edge features are interpreted based on comparison with the S K- and L-edge spectra of chalcopyrite and a MO/energy band structure model. The XANES spectra of these sulfides reflect the DOS of unoccupied S s-, p- and d-like states near and above the Fermi level. In tetrahedral Cu-Fe sulfides, the Fe3+ 3d crystal field band has much more significant DOS of unoccupied S 3p-and 3s-like states than the Cu+ 3d crystal field band. For Cu sulfides, the Cu+ 3d crystal field band has the higher DOS of S 3p- and 3 s-like states in tetrahedral structure than in structures with the triangular CuS3 cluster. The shifts in both S K- and L-edges correlate approximately linearly with the energy gap.  相似文献   

2.
2p (L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3d n → 2p 5 3d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2p XAS in a dilute system, the Fe L-edge spectrum of amethyst (α-SiO2: Fe) has been recorded; this spectrum shows that ~68% of the Fe in amethyst is Fe2+, and ~32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.  相似文献   

3.
X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS 3 ?II .  相似文献   

4.
Fracture surfaces of a natural carrollite specimen have been characterised by synchrotron and conventional X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy. For the synchrotron X-ray measurements, the mineral surfaces were prepared under clean ultra high vacuum and were unoxidised. The characterisation was undertaken primarily to establish unequivocally the oxidation state of the Cu in the mineral, but also to obtain information on the electronic environments of the Co and S, and on the surface species. Experimental and simulated Cu L2,3-edge absorption spectra confirmed an oxidation state of CuI, while Co 2p photoelectron and Co L2,3 absorption spectra were largely consistent with the CoIII established previously by nuclear magnetic resonance spectroscopy. S 2p photoelectron spectra provided no evidence for S to be present in the bulk in more than one state, and were consistent with an oxidation state slightly less negative than S-II. Therefore it was concluded that carrollite can be best represented by CuICoIII2(S4)-VII. The CuI oxidation state is in agreement with that expected for Cu tetrahedrally coordinated by S, but is in disagreement with the CuII deduced previously from some magnetic, magnetic resonance and Cu L-edge X-ray absorption spectroscopic measurements. A significant concentration of S species with core electron binding energies both lower and higher than the bulk value were formed at fracture surfaces, and these entities were assigned to monomeric and oligomeric surface S species. The density of Cu d states calculated for carrollite differed from that previously reported but was consistent with the observed Cu L3 X-ray absorption spectrum. The initial oxidation of carrollite in air under ambient conditions was confirmed to be congruent, unlike the incongruent reaction undergone by a number of non-thiospinel sulfide minerals.  相似文献   

5.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

6.
Thermal Stability of Assemblages in the Cu--Fe--S System   总被引:1,自引:0,他引:1  
The phase relations in the Cu-Fe-S system were determined from700 C to approximately 200 C in most portions of the systemand below 100 C in restricted areas. Approximate solid solutionlimits for bornite, chalcopyrite, and pyrrhotite were determinedat elevated temperatures. At low temperatures emphasis was placedon establishing the stable assemblages and less on determiningthe compositions of coexisting phases. At 700 C two extensiveternary solid solutions dominate the phase relations in thissystem. One of these solid solutions (bornite) includes thecompositions Cu2S, Cu18S, and Cu5FeS4and the other (chalcopyrite)lies with in the area bounded by the compositions CuFeS2 CuFe2S3,and CU3Fe4S4. The two fields are separated by approximately10 weight per cent copper at 700 C. The chalcopyrite volume,as seen in a trigonal prism representing temperature and composition,is intersected by a miscibility gap below approximately 600C.Below this temperature the two one-phase volumes are referredto as chalcopyrite and cubanite. Chalcopyrite is tetragonalat low temperature but isometric above approximately 550C.The temperature of the transformation is a function of composition.Cubanite is isometric above 252C, tetragonal from 252 to atleast 213C, and orthorhombic at lower temperature. The temperatureof the second transformation is unknown because the tetragonal-to-orthorhombictransformation has not been achieved in the laboratory. Borniteand pyrite become stable together at 568C and coexist downto 228C. Covellite appears with lowering temperature at 507C,and idaite at 501C. Idaite—pyrite and idaite—borniteare stable assemblages below 501 C. The composition of bornitecoexisting with idaite changes gradually towards digenite withdecreasing temperature, thus permitting the change from thebornite—pyrite tie-line to the digenite—chalcopyritetie-line at 228C. Other major tie-line changes are bornite—ironto pyrrhotite—copper below 475C and cubanite—pyriteto chalcopyrite—pyrrhotite below 334C. A new syntheticphase, x-bornite, which has a composition close to bornite (Cu5FeS4)but contains about 04 weight per cent more sulfur, forms whensulfur-rich bornite synthesized at high temperature is annealedbetween 62 and 140C. Optically this new phase is very similarto bornite, and their X-ray powder diffraction patterns aregiven for comparison. o The determined phase relations are applicable to numerous deposits.The tie-line changes involving bornitepyrite reacting to producedigenitechalcopyrite below 228 C and cubanite (isometric)pyritegoing to chalcopyritepyrrhotite below 334 C are of considerablegeological interest. The rates of these reactions are sufficientlyslow to allow the higher temperature assemblages to be observedin some ores. The cubic—tetragonal inversion in chalcopyriteis often deduced in ores by inversion twins. However, twinningis also commonly produced through deformation. Geological applicationof the inversion therefore depends on correct interpretationof the twinning. Because of the considerable solubility of copperin pyrrhotite the pyrrhotite—pyrite solvus of the pureFe—S system cannot be applied indiscriminately to oresthat also contain chalcopyrite or cubanite, or both. The newx-bornite phase was identified with the natural ‘anomalousbornites’, which when heated exsolve chalcopyrite and,depending on their composition, also digenite. The experimental results indicate that the mineral commonlyidentified as chalcopyrrhotite is in reality tetragonal or evenisometric cubanite. Experimental evidence could not be obtainedfor the existence of a phase of Cu2Fe4S7 or Cu2Fe4S7 composition,the older formulae given foor valleriite. The thermal breakdownof natural material supports the idea that valleriite is a low-temperaturepolymorph of chalcopyrite. The relatively uncommon occurrenceof idaite in comparison to covellite is attributed to the greaterdifficulty in nucleating idaite. The possibility of stable coexistenceof chalcocite and pyrite was investigated but was found to beprohibited by tie-lines between bornite and digenite even aslow as 100 C.  相似文献   

7.
The determination of the oxidation states of copper and iron in sulfides, and chalcopyrite (CuFeS2) in particular, using 2p X-ray photoemission spectroscopy (XPS) and L2,3-edge X-ray absorption spectroscopy (XAS) is revisited. Reassessment of the published spectra derived by these methods produces consistent results and reveals the ‘d count’ in the copper compounds to be intermediate between d9 and d10. Nevertheless, these covalent copper compounds can be divided into those nominally monovalent and those nominally divalent. The Fe L2,3-edge XAS of chalcopyrite, along with Mössbauer data, confirm the presence of high-spin Fe3+. Chalcopyrite, despite recent published reports to the contrary, clearly belongs to the monovalent copper class.  相似文献   

8.
Chalcopyrite was reacted with covellite and with chalcocite, respectively, between 200°C and 500°C. The ensuing solid-state replacement of chalcopyrite by bornite was studied both texturally and chemically. The relatively oxidizing conditions of the reaction chalcopyrite+covellite result in massive replacement, lacking structural control, where bornite and pyrite form complex intergrowth textures in chalcopyrite. Bornite nucleates around growing pyrite aggregates because of the release of copper and a decrease in volume. Diffusion of sulphur along grain boundaries and fractures largely controls the textural development. Reaction under the relatively reducing conditions involving chalcopyrite+chalcocite results in replacement of chalcopyrite in the sequence where chalcopyrite is replaced by bornite, below about 355°C, and by intermediate solid solution (ISS) and later bornite, above 355°C. The textural development, changing from replacement, apparently uninfluenced by directional properties in the host, to semioriented replacement, is structurally controlled. This suggests that the process is governed by diffusion of copper and iron through a sulphur framework. It is suggested that the observed formation of oriented bornite lamellae in chalcopyrite and in ISS during the chalcopyrite+chalcocite reaction may be explained by replacement exsolution at constant temperature.  相似文献   

9.
Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral inclusions in polished thin sections from the Tiegelongnan deposit, which consists of a high-sulfidation epithermal system(HSES) and a porphyry system(PS). Molybdenite,chalcopyrite, bornite, tennantite, enargite, digenite, anilite, covellite, and tetrahedrite have been identified by EPMA. Intergrowth, cross-cutting and replacement relationships between the metallic minerals suggest that molybdenite formed first(stage 1),followed by chalcopyrite ± bornite ± hematite(stage 2),then bornite ± Cu-sulfides ± Cu-Fe-sulfoarsenides(stage 3),and lastly Cu-Fe-sulfoarsenides ±Cu-sulfides(stage 4). Pyrite is developed throughout all the stages. Droplet-like inclusions of Au-Te minerals commonly occur in tennantite but not in the other major sulfides(molybdenite, chalcopyrite and bornite),implying that tennantite is the most important Au telluride carrier. The pervasive binary equilibrium phases of calaverite and altaite constrain f_(Te2) in the range from ~-6.5 to ~-8 and f_(S2)-11.The intergrowth of bornite and chalcopyrite and the conversion from bornite to digenite suggest fluctuated and relatively low precipitation temperature conditions in the HSES relative to the PS.Contrastingly, the dominance of chalcopyrite in the PS, with minor bornite, suggests relatively high temperature conditions. These new results are important for further understanding the mineral formation processes superimposed by HSES and PS systems.  相似文献   

10.
Cu-Fe-sulphide mineral assemblages from the Olympic Dam (OD) Fe-oxide Cu-U-Au-Ag deposit, South Australia, are studied down to the nanoscale to explore the potential these minerals have for understanding genetic processes such as primary deposit zonation. Cu-Fe-sulphide pairs: ‘brown’ bornite associated with chalcopyrite (bornite-chalcopyrite zone); and symplectites of ‘purple’ bornite with species from the chalcocite group, Cu2  xS (bornite-chalcocite zone), co-define an upwards and inwards deposit-scale zonation at OD. In the bornite-chalcocite zone, there is also an increase in the proportion of chalcocite relative to bornite within the symplectites towards upper levels. In this case, two-phase Cu2  xS assemblages are also present, as anisotropic, hexagonal chalcocite (CcH) with lamellar exsolutions of digenite, distinguishable at the μm-scale. Using compositional data (electron microprobe) combined with Transmission Electron Microscopy (TEM) study of foils prepared in–situ via Focused Ion Beam (FIB)-SEM, we show that Cu-Fe-sulphides from different ore zones feature nanoscale intergrowths, lattice defects, superstructure domains (na) and antiphase boundary domains (APBs) that can be interpreted as due to exsolution, coarsening and phase transformation during cooling from high-T solid solutions in the system Cu-Fe-S and sub-systems according to published phase diagrams. ‘Brown’ bornite [(Cu + Fe)/S > 5] contains pervasive lamellae of chalcopyrite which extend down to the nanoscale; such specimens appear homogeneous at the μm-scale. ‘Purple bornite’ [(Cu + Fe)/S < 5] in high-bornite symplectites is associated with chalcocite that shows APBs with 6a digenite and low-T chalcocite. Comparable APBs are also found in the ‘chalcocite’ zone with apparent homogeneity at the μm-scale. Both bornites contain exsolutions of djurleite. Systematic variation of Me/S and Cu/Fe in the two types of bornite points, however, to distinct origins from different bornite solid-solutions in the system Cu-Fe-S. Both show 2a and 4a intermediate superstructures. High-order superstructures (6a and incommensurate na) are restricted to the ‘purple’ bornite whereas the 2a4a low-T superstructure is found in both cases. Me/S ratios in the chalcocite group are variable; lower ratios (down to 1.8; digenite) are more common in chalcocite from symplectites with ‘purple’ bornite. Me/S can be as low as 1.4 where associated with ‘blue’ varieties (‘blaubleibender covellin’) of replacement origin. The two-phase Cu2  xS associations contain hexagonal chalcocite (Me/S = 1.95), lamellae of Cu-rich digenite (Me/S = 1.92), and anilite (Cu7S4) as nm-scale lamellae. Digenite shows 3a and 6a superstructures and CcH shows transition to pseudo-orthorhombic chalcocite. The presence of superstructures, high-T species and APBs is evidence for Cu-(Fe)-sulphide formation from high-T solid solutions at T > 300 °C (high-T phases, Cu-poor digenite), followed by cooling along distinct paths down to < 120 °C (APBs). The scenario of ‘exsolution from primary solid-solution’, corroborated by the consistency in phase relations within each zone across different scales of observation from deposit scale to nanoscale, backs up a model of primary hypogene ore precipitation rather than replacement, and accounts for the observed vertical zoning at OD. The FIB-TEM approach here is readily applicable to other deposits and shows that nanoscale observations are a valuable, although often overlooked, source of information to constrain ore genesis.  相似文献   

11.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

12.
The copper deposit La Leona consists of ore veins in a granite batholite which intruded into Permian sediments. In these veins the following minerals are observed: pyrite, sphalerite, chalcopyrite, galena, betekhtinite, two Bisulfosalts, electrum, bornite, chalcocite, enargite, tennantite, Zn-Fahlerz, cuprite, delafossite, molybdenite, hematite and iron hydroxides, and copper carbonates with quartz and iron carbonates as gangue. The betekhtinite, (CuFe)10Pb S6, found for the first time in Argentina, the Zn-Fahlerz and the sulfosalts (Cu3.2Bi1.2Pb1.2S8.5) and (Cu9.3Bi1.1S6.8) were studied in detail under the microscope, by X-rays and by microprobe. Specifically, the paragenesis of these three minerals with galena, chalcocite and bornite is discussed.
Résumé Le gisement de cuivre de la mine «La Leona» est formé de filons de minerais recoupant un batholite granitique qui a fait intrusion dans des sédiments permiens. Les minéraus suivants ont été observés: pyrite, blende, chalcopyrite, galène, bétekhtinite, deux sulfosels de Bi, électrum, bornite, chalcosine, énargite, tennantite, «Zn-Fahlerz», cuprite, delafossite, molybdénite, hématite et hydroxydes de fer, des carbonates de cuivre, dans une gangue de quartz et de carbonates de fer. La bétekhtinite (Cu Fe)10Pb S6, trouvée pour la première fois en Argentine, le «Zn-Fahlerz» et les sulfosels (Cu3.2Bi1.2Pb1.2S8.5) et (Cu9.3Bi1.1S6.8) ont été spécialement étudiés à l'aide de la microscopie, de la diffraction des rayons-X et de la microsonde. La paragénèse formée par ces trois mineraux associés à la galène, la chalcosine et la bornite est discutée.
  相似文献   

13.
A significant proportion of the copper in the Ca?ariaco Norte porphyry copper deposit in northern Peru occurs in chalcocite and covellite-rich veins and disseminations that exist from the surface to depths greater than 1?km. The overall range of Cu isotopic ratios of 42 mineral separates from Ca?ariaco varies from ?8.42 to 0.61?‰, with near-surface chalcocite and Fe oxides having isotopically depleted values compared to chalcocite, covellite, and chalcopyrite from deeper levels. The majority (34 of 36) of measured Cu sulfides have a typical hypogene copper isotope composition of δ65Cu?=?0.18?±?0.38?‰, with no enriched isotopic signature existing in the Ca?ariaco Norte sulfide data. Thus, the copper isotope data indicate that most of the chalcocite and covellite formed from high-temperature hypogene mineralization processes and that only a minor portion of the deposit is enriched by supergene processes. The nonexistence of an enriched δ65Cu reservoir suggest the presence of an undiscovered lateral/exotic Cu occurrence that enriched 65Cu that remained in solution during weathering. Regardless of the cause, the comparative analysis of the Cu isotope dataset reveals that little exploration potential for an extensive supergene enrichment blanket exists because the weathering history at Ca?ariaco Norte was not conducive to preservation of enriched Cu at depth beneath the leach cap.  相似文献   

14.
The Fe L 2,3-edge spectra for a range of natural minerals and synthetic solid solutions have been measured using the technique of parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM). The Fe L 2,3 -edges of the minerals are characterised by two white-line features and exhibit electron energy-loss near-edge structure (ELNES) characteristic of Fe valence state. For divalent iron, the Fe L 3 -edge spectra are dominated by a sharp peak (white-line) at ca. 707.8 eV, followed by a broader and less intense peak at ca. 710.5 eV. The ELNES on the Fe L 3 -edge of trivalent iron consists of a white-line with its maximum at ca. 709.5 eV and a preceeding peak at ca. 708.0 eV. Mineral solid solutions that contain both Fe2+ and Fe3+ exhibit an Fe L 3 -edge shape that is composed of Fe L 3 -edges from the respective Fe2+- and Fe3+-bearing end members. The integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) show clear differences for Fe2+ and Fe3+. We demonstrate the feasibility of quantification of the ferrous/ferric ratio in minerals by determining the integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) as a function of the ferric iron concentration resulting in an universal curve within the experimental errors. The application of the universal curve combined with the high spatial resolution using the PEELS/TEM allows the quantification of the ferric iron concentration on a scale down to 10 nm, which is illustrated from a sample of ilmenite containing hematite exsolution lamellae that shows different Fe L 2,3 -edge shapes consistent with variations in the Fe2+-Fe3+ ratio over distances of ca. 100 nm. Received: 30 July 1997 / Revised, accepted: 26 October 1997  相似文献   

15.
Estimation of Fe3+/ΣFe ratios in materials at the submicrometre scale has been a long-standing challenge in the Earth and environmental sciences because of the usefulness of this ratio in estimating redox conditions as well as for geothermometry. To date, few quantitative methods with submicrometric resolution have been developed for this purpose, and most of them have used electron energy-loss spectroscopy carried out in the ultra-high vacuum environment of a transmission electron microscope (TEM). Scanning transmission X-ray microscopy (STXM) is a relatively new technique complementary to TEM and is increasingly being used in the Earth sciences. Here, we detail an analytical procedure to quantify the Fe3+/ΣFe ratio in silicates using Fe L2,3-edge X-ray absorption near edge structure (XANES) spectra obtained by STXM, and we discuss its advantages and limitations. Two different methods for retrieving Fe3+/ΣFe ratios from XANES spectra are calibrated using reference samples with known Fe3+ content by independent approaches. The first method uses the intensity ratio of the two major peaks at the L3-edge. This method allows mapping of Fe3+/ΣFe ratios at a spatial scale better than 50 nm by the acquisition of 5 images only. The second method employs a 2-eV-wide integration window centred on the L2 maximum for Fe3+, which is compared to the total integral intensity of the Fe L2-edge. These two approaches are applied to metapelites from the Glarus massif (Switzerland), containing micrometre-sized chlorite and illite grains and prepared as ultrathin foils by focused ion beam milling. Nanometre-scale mapping of iron redox in these samples is presented and shows evidence of compositional zonation. The existence of such zonation has crucial implications for geothermometry and illustrates the importance of being able to measure Fe3+/ΣFe ratios at the submicrometre scale in geological samples.  相似文献   

16.
The Kingking deposit is a gold‐rich porphyry copper deposit and the southernmost deposit at the eastern Mindanao mineralized belt, Philippines. It is underlain by Cretaceous–Paleogene sedimentary and volcanic rocks that are intruded by mineralized Miocene diorite porphyries and by barren Miocene–Pliocene dacite and diorite porphyries. The main alteration zones in the deposit are the inner potassic zone and the outer propylitic zone. The biotite‐bearing diorite and hornblende diorite porphyries are the primary host rocks of mineralization. Two dominant copper minerals, bornite and chalcopyrite, which usually occur as fracture fillings, are associated with fine crystalline quartz veinlet stockworks in the mineralized diorites. Minor secondary covellite, chalcocite and digenite are also observed. The primary Cu‐Fe sulfide phases initially deposited from ore fluids consisted of bornite solid solution (bnss) and intermediate solid solution (iss), which decomposed to form the bornite and chalcopyrite. Peculiar bornite pods that are different from dissemination and are associated with volcanic rock xenoliths in biotite‐bearing diorite porphyry are noted in a drill hole. These pods of bornite are not associated with quartz veinlet stockworks. Fluid inclusion analyses show three types of inclusions contained in Kingking samples: two‐phase fluid‐rich and vapor‐rich inclusions and polyphase hypersaline inclusions from porphyry‐type quartz veinlet stockworks. The liquid–vapor homogenization temperatures (TH) and the dissolution temperature of halite daughter crystals (TM) from the polyphase hypersaline inclusions predominantly range from 400°C up to >500°C. The wide range of TH and TM may be due to heterogeneous trapping of variable ratios of vapor and brine. For some inclusions, TH > TM and in some cases, TH < TM, indicating that some of the brine was supersaturated or saturated with NaCl at the time of entrapment. Calculated salinity of the polyphase hypersaline inclusions ranges from 40 to 60% NaCl equivalent. Temperature and vapor pressure of mineralized fluid were estimated to be 400°C and 16 MPa.  相似文献   

17.
Chalcopyrite and bornite are the main Au-bearing minerals at Cu porphyry deposits, volcanogenic massive sulfide (VMS) deposits, Cu-Ni deposits of the mafic magmatic complexes, and ores of submarine sulfide edifices. Bornite and intermediate solid solutions with wide compositional variations (bnss and iss – high-temperature chalcopyrite, correspondingly), which can scavenge economic concentrations of Au, appear in the Cu-Fe-S system at ore-forming conditions. However, the state of Au in bnss and iss is yet unknown. To solve this conundrum, we synthesized samples with net chemical composition of bnss and iss, studied them by in situ X–ray absorption spectroscopy (XAS), and used the experimental data to explain the Au distribution among natural ore-forming minerals. The sulfide samples were obtained at 495–700 °C in Au-saturated system by means of salt flux method. The bnss contained ~1.2–1.6 log units more Au than iss: up to 18 wt.% Au in bnss vs 0.4 wt.% Au in iss at 700 °C. An increase of temperature resulted in the sharp increase of Au concentration in both phases, ~1 log unit per 100 °C at f(S2) close to S(l) saturation. Analysis of Au L3-edge spectra recorded at 25–675 °C revealed that at 25 °C Au exists mainly in the metallic state. At t > 500 °C the spectral features of Au° disappear, and “chemically bound” Au predominates. The Au form of occurrence in the iss field is interpreted as Au-bearing clusters with a stromeyerite-like (CuAgS) structure. Digenite Cu2–xS and bnss contain Au in a mixture of stromeyerite-like and petrovskaite-like (Au0.8Ag1.2S) clusters. The chemical composition of both forms is close to CuAuS, where the nearest Au neighbors are two S atoms at RAu-S = 2.34–2.36 Å. Results of the present study allow to determine the state of Au and its concentration in the main Cu-bearing minerals of sulfide ores as a function of the T-f(S2)-compositional parameters. Due to the sharp increase of the CuAuS clusters stability with increasing temperature, in high-temperature ores formed at t > 350 °C Au enriches Cu-bearing minerals in comparison with Cu-free or Cu-deficient ones. As a result, in these ores native gold, being a product of decomposition of the Au-bearing clusters, is associated with Cu-rich minerals – chalcopyrite, bornite, digenite, chalcocite.  相似文献   

18.
Members of the (Cu, Fe)S2 solid solution crystallize in the pyrite structure type, space group Pa 3, Cu and Fe being statistically distributed on the metal sites. Within this series, a semiconductor to metal transition can be detected between 25 and 38 mole% CuS2. Compositional dependent 57Fe-Moessbauer spectra reveal Fe2+ in low-spin configuration. A minimum of the quadrupole splitting and the slope in the 57Fe-isomer shift in the intermediate part of the system, near 30 mole% CuS2, can be correlated with the onset of metallic conductivity, whereas the structural parameters are not influenced by this transition. The analysis of the compositional dependency of the quadrupole splitting, in comparison to the isotypic system (Co, Fe)S2, leads to the conclusion that Cu in solid (Cu, Fe)S2 compounds is Cu+ with an Ar -3 d10 electronic configuration.  相似文献   

19.
In the Ospin–Kitoi ultramafic massif of the Eastern Sayan, accessory and ore Cr-spinel are mainly represented by alumochromite and chromite. Copper–nickel mineralization hosted in serpentinized ultramafic rocks occurs as separate grains of pentlandite and pyrrhotite, as well as assemblages of (i) hexagonal pyrrhotite + pentlandite + chalcopyrite and (ii) monoclinal pyrrhotite + pentlandite + chalcopyrite. Copper mineralization in rodingite is presented by bornite, chalcopyrite, and covellite. Talc–breunnerite–quartz and muscovite–breunnerite–quartz listvenite contains abundant sulfide and sulfoarsenide mineralization: pyrite, gersdorffite, sphalerite, Ag–Bi and Bi-galena, millerite, and kuestelite. Noble metal mineralization is represented by Ru–Ir–Os alloy, sulfides, and sulfoarsenides of these metals, Au–Cu–Ag alloys in chromitite, laurite intergrowth, an unnamed mineral with a composition of Cu3Pt, orcelite in carbonized serpentinite, and sperrylite and electrum in serpentinite. Sulfide mineralization formed at the late magmatic stage of the origination of intrusion and due to fluid–metamorphic and retrograde metasomatism of primary rocks.  相似文献   

20.
Native metals and metal alloys are common in serpentinized ultramafic rocks, generally representing the redox and sulfur conditions during serpentinization. Variably serpentinized peridotites from the Santa Elena Ophiolite in Costa Rica contain an unusual assemblage of Cu-bearing sulfides and native copper. The opaque mineral assemblage consists of pentlandite, magnetite, awaruite, pyrrhotite, heazlewoodite, violarite, smythite and copper-bearing sulfides (Cu-pentlandite, sugakiite [Cu(Fe,Ni)8S8], samaniite [Cu2(Fe,Ni)7S8], chalcopyrite, chalcocite, bornite and cubanite), native copper and copper–iron–nickel alloys. Using detailed mineralogical examination, electron microprobe analyses, bulk rock major and trace element geochemistry, and thermodynamic calculations, we discuss two models to explain the formation of the Cu-bearing mineral assemblages: (1) they formed through desulfurization of primary sulfides due to highly reducing and sulfur-depleted conditions during serpentinization or (2) they formed through interaction with a Cu-bearing, higher temperature fluid (350–400 °C) postdating serpentinization, similar to processes in active high-temperature peridotite-hosted hydrothermal systems such as Rainbow and Logatchev. As mass balance calculations cannot entirely explain the extent of the native copper by desulfurization of primary sulfides, we propose that the native copper and Cu sulfides formed by local addition of a hydrothermal fluid that likely interacted with adjacent mafic sequences. We suggest that the peridotites today exposed on Santa Elena preserve the lower section of an ancient hydrothermal system, where conditions were highly reducing and water–rock ratios very low. Thus, the preserved mineral textures and assemblages give a unique insight into hydrothermal processes occurring at depth in peridotite-hosted hydrothermal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号