首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The global climate warming accelerated in the 1980s has become a focus in the world. Based on the month by month and year by year temperature data from 160 representative stations throughout the country during 1951-1999, this paper analyses annual and four seasons' temperature variations of China since the 1980s. It was found out that the non-equalibrium response with relative great regional and seasonal differences is represented in the country's climate warming. In regional changes a trend of "warm in the north and cold in the south" occurs whereas in seasonal changes, the characters of "warm in winter and cool in summer" present. Significant verification of the temperature variations conducted in terms of mathematical statistics reveals that a confidence level of over 95% has been basically reached in areas north of the Yangtze River. Meanwhile, according to data of diurnal mean temperature steadily passing through accumulated temperature ≥10℃ from 335 stations since 1951 or since the founding of the stations in the early 1950s to 1999, comparative analysis of the data of the last 19 years with that of the first 30 years was conducted and the accumulated temperature ≥10℃ and the variation range of the persistent number of days ≥10℃ were obtained. It was concluded that a general northward shift of central subtropics, north subtropics, warm temperate zone, mesothermal zone and frigid temperate zone of eastern China was observed. The northward shift of north subtropics and warm temperate zone was obvious but changes of south subtropics and marginal tropics were insignificant. In western China, in addition to southwestern Yunnan, the Qinghai-Tibet Plateau and western Inner Mongolia where the temperature zones of each either shifted northward or trended to move upward, not much changes were found in other areas or they shifted southward slightly and declined.  相似文献   

2.
Based on high-precision data obtained in the past decade from GPS re-measurement in the North China Network, the Crustal Movement Observation Network of China (CMONOC) and GPS measurement along the Shanxi graben zone, the status and evolution of horizontal crustal movement in the North China region are analyzed. The results show that (1) the Yanshan tectonic zone (Zhangjiakou-Bohai Sea zone)is an active one with the largest horizontal strain in the North China region; The largest tendency differential movement of adjacent blocks is seen between the Yanshan block and the North China plain block; about 2mm/a (left lateral) ; (2)The significant horizontal differential movement along the boundaries of the North China region is characterized by right-lateral strike-slip movement at the middle-north segment on its west boundary (composed of Yinchuan and other active tectonic zones) and compressive movement at the south segment; while the Yinshan rift zone located along the west segment on its north boundary is dominated by tensile movement. Other boundaries and zones have no obvious differential movement; (3) On the whole, measurements of each period differ from one another, which might result from the nonlinear movement component as well as from the error effect. In the paper, results of the relative movement and strain in different periods are given for different blocks and boundary zones.  相似文献   

3.
Short sediment cores retrieved from Bosten Lake, the largest inland freshwater lake in China, were used to explore humidity and precipitation variations in arid central Asia during the past millennium. The chronology of the cores was established using 137Cs, 210Pb and AMS 14C dating re- sults. Multi-proxy high-resolution analysis, including pollen ratios of Artemisia and Chenopodiaceae (A/C), carbonate content and grain size, indicates that the climate during the past millennium can be divided into three stages: a dry climate between 1000―1500 AD, a humid climate during the Little Ice Age (LIA) (c. 1500―1900 AD), and a warm dry period after 1900 AD. On centennial timescales, the climate change in northwestern China during the past 1000 years is characterized by oscillations between warm-dry and cold-humid climate conditions. All the proxies changed significantly and indi- cate increased precipitation during the LIA, including increased pollen A/C ratios and pollen concen- trations, decreased carbonate content and increased grain size. The humid period during the LIA re- corded by the Bosten Lake sediments is representative of arid central Asia and is supported by nu- merous records from other sites. During the LIA, the water runoff into the Keriya River and Tarim River in the Tarim Basin increased, while the ice accumulation in the Guliya ice core increased. Additionally, the lake levels of the Aral and Caspian Sea also rose, while tree-ring analysis indicates that precipita- tion increased. We hypothesize that both the lower temperature within China and the negative anomalies of North Atlantic Oscillation (NAO) during this period may have contributed to the humid climate within this area during LIA.  相似文献   

4.
Since Shi et al. proposed that the climate in the drylands of Northwest China experienced a significant transition from a “warming and drying” trend to a “warming and wetting” trend in the 1980s, researchers have conducted numerous studies on the variations in precipitation and humidity in the region and even in arid Central Asia. In particular, the process of the “warming and wetting” trend by using obtained measurement data received much attention. However, there remain uncertainties about whe...  相似文献   

5.
The north and south China faunas are subdivided along the line of Huaihe River-Qinling Mountains- Hengduan Mountains-Himalayas, to the north is the Palearctic Region, and to the south is the Oriental Region, which is the result of long-time evolution. Hundreds of Quaternary fossil localities have been known up to now, more than 60 of which contain warm-adapted elements which can be referred to 20 species. Among the warm-adapted elements appearing in north China, Hystrix, Macaca, Palaeoloxodon, Dicerorhinus and Bubalus are the most frequently recorded genera. There are three kinds of causal explanation about the frequent appearance of warm-adapted elements in north China: The first hy- pothesis attributed them to the dispersal events of warm-adapted mammals from the south during warm stages or warm seasons; the second scenario thinks that these warm-adapted mammals in north China were once derived there in situ and subsequently emigrated to the south with the cooling down of the global climate; the last hypothesis believes that these warm-adapted elements were not real warm-climate animals at that time. This study shows that almost none of the warm-adapted mammals in north China was recovered in the loess, and also almost all of the fossil localities which bear warm-adapted mammals fall within the warm temperate zone of nowadays. In fossil assemblage, those warm-adapted elements rarely co-exist with the cold-adapted mammals. All these evidences mentioned above indicate that the warm-adapted mammals in north China represent warm climate, but not hot one. Because all these warm-adapted mammals are widely distributed oriental elements, some of them even still exist north of the Huaihe River today. Up to now, no typical oriental elements have ever been re- covered in north China, such as pangolin, primitive primates (e.g. loris and tarsier), big apes (e.g. Gi- gantopithecus, Pongo and Hylobates), etc. The Late Pleistocene lasted a relatively shorter time, but the appearance of warm-adapted mammals during that span were the most frequent and most widespread. It means that the climate of the Late Pleistocene experienced the most frequent fluctuation over the whole period of Quaternary.  相似文献   

6.
Since climatic condition is the important foundation for human subsistence and development and the key factor in sustainable development of economy and society, climate change has been a global issue attracting great attentions of politicians, scientists, governments, and the public alike throughout the world. Existing climate regionalization in China aims to characterize the regional differences in climate based on years of the mean value of different climate indexes. However, with the accelerating climate change nowadays, existing climate regionalization cannot represent the regional difference of climate change, nor can it reflect the disasters and environmental risks incurred from climate changes. This paper utilizes the tendency value and fluctuation value of temperature and precipitation from 1961 to 2010 to identify the climate change quantitatively, and completes the climate change regionalization in China(1961–2010) with county administrative regionalization as the unit in combination with China's terrain feature. Level-I regionalization divides China's climate change(1961–2010) into five tendency zones based on the tendency of temperature and precipitation, which are respectively Northeast China-North China warm-dry trend zone, East China-Central China wet-warm trend zone, Southwest China-South China dry-warm trend zone, Southeast Tibet-Southwest China wet-warm trend zone, and Northwest China-Qinghai-Tibet Plateau warm-wet trend zone; level-II regionalization refers to fourteen fluctuation regions based on level-I regionalization according to the fluctuation of temperature and precipitation.  相似文献   

7.
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.  相似文献   

8.
Global climate during the Jurassic has been commonly described as a uniform greenhouse climate for a long time.However,the climate scenario of a cool episode during the Callovian-Oxfordian transition following by a warming trend during the Oxfordian(163.53 to157.4 Ma) is documented in many localities of the western Tethys.It is still unclear if a correlatable climate scenario also occurred in the eastern Tethys during the same time interval.In this study,a detailed geochemical analysis on the 1060 m thick successions(the Xiali and Suowa formations) from the Yanshiping section of the Qiangtang Basin,located in the eastern Tethys margin during the Callovian-Oxfordian periods,was performed.To reveal the climate evolution of the basin,carbonate content and soluble salt concentrations(SO_4~(2-),Cl~-) were chosen as climatic indices.The results show that the overall climate patterns during the deposition of the Xiali and Suowa formations can be divided into three stages:relatively humid(~164.0 to 160.9 Ma),dry(~160.9 to159.6 Ma),semi-dry(~159.6 to 156.8 Ma).A similar warming climate scenario also occurred in eastern Tethys during the Callovian-Oxfordian transition(~160.9 to159.6 Ma).Besides,we clarify that the Jurassic True polar wander(TPW),the motion of the lithosphere and mantle with respect to Earth's spin axis,inducing climatic shifts were responsible for the aridification of the Qiangtang Basin during the Callovian-Oxfordian transition with a review of the paleolatitude of the Xiali formation(19.7+2.8/-2.6° N) and the Suowa formation(20.7+4.1/-3.7° N).It is because the TPW rotations shifted the East Asia blocks(the North and South China,Qiangtang,and Qaidam blocks) from the humid zone to the tropical/subtropical arid zone and triggered the remarkable aridification during the Middle-Late Jurassic(ca.165-155 Ma).  相似文献   

9.
The Cluster and Hamming methods are used in this paper for a comprehensive study on geology,geomorphology,geophysical field,crustal deformation,active faults,regional stress axes and their relation in Hebei region.Fourteen potential seismic zones in which shocks with M≥6 may happen have been identified.Shocks with M≥6 have occurred in seven of them,and the others have been considered as a future strong earthquake areas.Both the K value and testing of deleting nodes show the stability of results obtained in this paper.The potential seismic zones identified in the paper fall into the areas of marked risk areas within 10 years in North China,but the scale of the identified zones is smaller.The Datong-Yanggao earthquake with M-6.1 occurred in October 1989 precisely in the 14th potential seismic zone mentioned above.  相似文献   

10.
Monthly data of Self-Calibrated Palmer Drought Severity Index (PDSI) from 1951 to 2000 are calculated using historical precipitation and temperature data for Chinese 160 stations. Temporal and spatial pat-terns of the first empirical orthogonal function (EOF) of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature, which is similar to the linear PDSI trend during 1951―2000 calculated using all monthly data. The EOF analysis also reveals that the leading mode correlates significantly with ENSO events in time and space. The ENSO EOF shows that during the typical warm phase of ENSO, surface conditions are drier in most regions of China, especially North China, but wetter than normal in the southern regions of Changjiang River, and Northwest China. During the typical cold phase of ENSO, these anomalies reverse sign. From 1951 to 2000, there are large multi-year to decadal variations in droughts and wet spells over China, which are all closely related to strong El Nio events. In other words, when one strong El Nio event happens, there is a possible big variability in droughts and wet spells over China on the multi-year or decadal scale. Studies also sug-gest that during the last 2―3 decades climate changes over China, especially North China's drying and northwest China's wetting, are closely related to the shift in ENSO towards warmer events and global warming since the late 1970s. The instability of the relationship is also studied. It is revealed that there is a good correlation between ENSO and Chinese variations in droughts and wet spells in the 3―8-year band, but the correlation between ENSO and Chinese variations in droughts and wet spells is instable. Studies suggest that there are decadal changes in the correlation: the wavelet coherency between ENSO and Chinese variations in droughts and wet spells is high during 1951―1962 and 1976―1991, but low during 1963―1975 and 1992―2000.  相似文献   

11.
Through analysis of the distribution pattern and changing characteristics of atmospheric aerosols over the East Asia region during warm seasons in recent 20 a and beyond as well as their possible interactive relationship with a variety of meteorological elements, it is found that the high-value zone of aerosol optical depth derived from the Total Ozone Mapping Spectrometer (TOMS), its significant negative correlation zones in terms of sunshine duration (SD) and surface air temperature (SAT) and its significant positive correlation zones with low-level cloud amount (LCC) are co-located in the South China region during warm periods. Based on this finding, the region is referred to as a “significant impact zone” (SI zone) affected by aerosols. Then, a comparative analysis is made on variation differences of observed SAT, SD and LCC, etc. in different regions. It is also found that the LCC is increased and the SD is decreased within the “SI zone” over eastern China during the warm season. These characteristics are more evident than those beyond the zone, while the warming trend within the zone is evidently weaker than that outside it. Studies show that since recent 20 a, under the influence of aerosols, the LCC tend to increase substantially with a clear decrease of SD and an unnoticeable warming trend within the “SI zone”. Comparing with the climate change beyond the zone, the difference is significant. Therefore, the effects of atmospheric aerosols on climate is possibly one of the contributions to the difference of climate change existed between the southern and northern parts of the Eastern China during a warm season. Supported by the International Sci-Tech Cooperative Project under the auspices of the Ministry of Science and Technology of the People’s Republic of China (No. 2004DFA06100)  相似文献   

12.
利用1951~2000年中国东北地区23个台站资料,对东北夏季气温的时空分布进行了研究,发现其变化除具有整体的一致性外,东北南部和北部的夏季气温在年际和年代际时间尺度都表现出很大不同,其中北部区域的夏季气温在1987~1988年间发生了一次显著的气候突变. 另外,剔除夏季气温全区一致变化的年份后,南北两区夏季气温与大气环流和海表温度的关系表明:突变前,影响北部和南部冷/热夏季的大气环流形势存在显著的不同,关键海域亦有很大差异:影响南部的为中纬度西太平洋和印度洋部分海域,影响北部的主要为ENSO事件;突变后,两区的夏季气温及相应大气环流和关键海区都趋于一致. 在整个分析时段内,北部夏季气温与东亚夏季风存在显著负相关,而南部的关系则不明显.  相似文献   

13.
Climate extremes in South Western Siberia: past and future   总被引:1,自引:1,他引:0  
In this study, the temporal and spatial trends of ten climate extreme indices were computed based on observed daily precipitation and on daily maximum and minimum temperatures at 26 weather stations in South Western Siberia during the period 1969–2011 and, based on projected daily maximum and minimum temperatures, during 2021–2050. The Mann–Kendall test was employed to analyze the temporal trend and a combination of multiple linear regressions and semivariogram functions were used to evaluate the regional spatial trends and the local spatial variability of climate extremes, respectively. The results show that the temperature-based climate extremes increase at a 0.05 significance level while none of the precipitation-based climate extremes did. Spatially, dominant gradients are observed along latitude: The northern taiga vegetation zone experiences a colder and wetter climate while the southern forest steppe zone is drier and hotter. Over time, a tendency towards homogenization of the regional climate is observed through a decrease of the spatial variability for most climate extreme indices. In the future, the most intense changes are anticipated for the bio-climate indicators “growing season length” and “growing degree days” in the north, while the warming indicators, “warm day” and “warm night” are expected to be high to the south.  相似文献   

14.
Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China’s climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.  相似文献   

15.
The impact of global warming on the climate of northern China has been investigated intensively, and the behavior of the East Asian monsoon during previous intervals of climatic warming may provide insight into future changes. In this study, we use paleovegetation records from loess and lake sediments in the marginal zone of the East Asian summer monsoon(EASM) to reconstruct the EASM during the interval of warming from the Last Glacial Maximum(LGM) to the Holocene. The results show that during the LGM, desert steppe or dry steppe dominated much of northern China; in addition, the southeastern margin of the deserts east of the Helan Mountains had a distribution similar to that of the present-day, or was located slightly further south, due to the cold and dry climate caused by a strengthened East Asian winter monsoon(EAWM) and weakened EASM. During the last deglaciation, with the strengthening of the EASM and concomitant weakening of the EAWM, northern China gradually became humid. However, this trend was interrupted by abrupt cooling during the Heinrich 1(H1) and Younger Dryas(YD) events. The EASM intensified substantially during the Holocene, and the monsoon rain belt migrated at least 300 km northwestwards, which led to the substantial shrinking of the desert area in the central and eastern part of northern China, and to the large expansion of plants favored by warm and humid conditions. Paleoclimatic records from the marginal zone of the EASM all show that the EASM reached its peak in the mid-Holocene, and past global climatic warming significantly strengthened the EASM, thereby greatly improving the ecological environment in northern China. Thus, northern China is expected to become wetter as global warming continues. Finally, high resolution Holocene vegetation records are sparse compared with the numerous records on the orbital timescale, and there is a need for more studies of Holocene climatic variability on the centennial-to-decadal scale.  相似文献   

16.
Warming in the Arctic Intermediate Water (AIW) has been reported in a series of articles in recent years. Prior to 1992, the water temperature of AIW off the Chukchi Continental Slope had never exceeded 0.5℃. Aagaard et al.[1] and Carmack[2] were the first to report that the temperature in AIW in the area in 1993 was close to 1℃, based on the data observed in a Canadian expedition. In 1994, the temperature of AIW around the Chukchi Sea and Mendeleyev Ridge again rose by at least an…  相似文献   

17.
以2009-2010年发生在中国西南地区的持续性干旱事件为例,通过干旱和大气变量的物理分解得到了一些干旱事件发生的新认识.气象干旱多为年循环的气候干季与干旱扰动的叠加所致.一次干旱扰动大约为30-50天,而一次持续性干旱事件是由几次干旱扰动组成的.大气高度场和风场中存在三种时间尺度的扰动.一种是年际行星尺度的大气扰动,与ENSO冷暖事件有关,起源于赤道并传播到中高纬度地区需要2-4年.另一种是季节内行星尺度的大气扰动,与来自赤道地区的30-50天振荡有关.此外,大气中还存在天气尺度的扰动.利用行星尺度大气扰动向赤道外传播与天气尺度扰动的叠加,区域持续性干旱事件能够找到前期预报信号.  相似文献   

18.
Using the total ozone mapping spectrometer (TOMS) aerosol optical depth (AOD)data and the sunshine duration, fog days, Iow cloud cover (LCC), etc. meteorological data in 1979-2000 in North China, as well as empirical orthogonal function (EOF) mode statistical analyses method, the winter aerosol distributive character of Beijing and peripheral city agglomeration and its influence effect on regional climate are investigated in this paper, especially the relation between aerosol influence effect and distinct change regions of eigenvectors of EOF mode. It is found from analyzing the regional distribution of the long-term averaged winter TOMS AOD that there is a large-scale relatively stable high value zone of aerosol concentration in the valley of the Beijing and peripheral U-shape megarelief. A high correlation area of AOD between Beijing and its southern peripheral exists in winter, and in this significant region of aerosol interaction, there is "in-phase" character of the interannual variations of winter AOD, fog days, and LCCs. It indicates that the variations of aerosol in Beijing and its peripheral areas have impacts on interannual changes of fog days and LCCs in this area. The EOF analyses of the meteorological data further reveal the climate change regions and long-term trends of winter sunshine duration-reducing, and LCC- and fog days-increasing in North China. The areas of significant changes of the first EOF eigenvectors (FEE) of sunshine duration, fog days, LCCs almost superpose on corresponding marked regions of interdecadal differences between the 1990s and 1980s, and all accord with the S-N zonal high value pattern and high correlation region of winter AOD in Beijing and its peripheral areas. Interannual variations of their associated time coefficients (ATC) are in phase with that of regional mean AOD, and both of them have a secular rising trend. Results by EOF mode analyses depict the regional climatic change principal character of winter sunshine duration-reducing, and LCC- and fog days-increasing in peripheral areas to the south of Beijing, and reveal the regional influence effect of aerosol, i.e. the high value zone of long-term averaged winter AOD, significant change regions of FEE of sunshine duration, fog days, and LCC all lie in peripheral city agglomeration to the south of Beijing. These distributive features above suggest that there exists a regional strengthening trend of aerosol climatic effect within influence domain in peripheral city agglomeration to the south of Beijing.  相似文献   

19.
The effect of atmospheric aerosols on the temperatures of a zonal average climate model is investigated. This is done by introducing into the climate model the results of extensive calculations of the effect of aerosols on the partitioning of solar radiation. Calculations are performed for a non-absorbing and a sloghtly absorbing aerosol, for average and for heavy aerosol amounts. The results indicate that the presence of atmospheric aerosols causes a cooling of the earth's surface and atmosphere, at all latitudes, with aerosol amounts, especially for the absorbing aerosols. The results are compared with some of the previous estimates of aerosol effects on climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号