首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We present an analytical solution of groundwater head response to tidal fluctuation in a coastal multilayered aquifer system consisting of an unconfined aquifer, a leaky confined aquifer and a semi‐permeable layer between them. The submarine outcrop of the confined aquifer is covered by a thin silt layer. A mathematical model and the analytical solution of this model are given. The silt layer reduces the amplitude of the hydraulic head fluctuation by a constant factor, and shifts the phase by a positive constant (time lag), both of which depend on the leakances of the silt layer and the semi‐permeable layer. The time lag is less than 1·5 h and 3·0 h for semi‐diurnal and diurnal sea tides respectively. When the leakance of the semi‐permeable layer or the silt layer assumes certain special values, the solution becomes the existing solutions derived by previous researchers. The amplitude of the hydraulic head fluctuation in the confined aquifer increases with the leakance of the silt layer and decreases with the leakance of the semi‐permeable layer, whereas the phase shift of the fluctuation decreases with both of them. A hypothetical example shows that neglecting the silt layer may result in significant parameter estimation discrepancy between the amplitude attenuation and the time‐lag fittings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Xun Zhou 《水文研究》2008,22(16):3176-3180
Measurements of the tide and groundwater levels in coastal zones are of importance in determining the properties of coastal aquifers. The solution to a one‐dimensional unsteady groundwater flow model in a coastal confined aquifer with sinusoidal fluctuation of the tide shows that the tidal efficiency decreases exponentially with distance and the time lag increases linearly with distance from the coast. The aquifer property described by the ratio of storage coefficient to transmissivity is determined if the damping constant of the tidal efficiency or the slope of the time lag with distance are obtained on the basis of tidal measurements. Hourly observations of the tide and groundwater levels at 10 wells on the northern coast near Beihai, China show that with distance from the coast, tidal efficiency decreases roughly exponentially and the time lag increases roughly linearly. The estimated ratio of storage coefficient to transmissivity of the confined aquifer ranges from 1·169 × 10?6 d m?2 to 1·83 × 10?7 d m?2. For a given transmissivity of 750 m2 d?1, the storage coefficient of the aquifer is 8·7675 × 10?4 with the tidal efficiency method and 1·3725 × 10?4 with the time lag method. The damping constant of the tidal efficiency with distance can be defined as the tidal propagation coefficient. The value of the confined aquifer is determined as 0·0018892 m?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Closed‐form solutions are proposed for natural seepage in semiconfined (leaky) aquifers such as those existing below the massive Champlain Sea clay layers in the Saint‐Lawrence River Valley. The solutions are for an ideal horizontal leaky aquifer below an ideal aquitard that may have either a constant thickness and a constant hydraulic head at its surface, or a variable thickness and a variable hydraulic head at its surface. A few simplifying assumptions were needed to obtain the closed‐form solutions. These have been verified using a finite element method, which did not make any of the assumptions but gave an excellent agreement for hydraulic heads and groundwater velocities. For example, the difference between the two solutions was smaller than 1 mm for variations in the 5 to 8 m range for the hydraulic head in the semiconfined aquifer. Note that fitting the hydraulic head data of monitoring wells to the theoretical solutions gives only the ratio of the aquifer and aquitard hydraulic conductivities, a clear case of multiple solutions for an inverse problem. Consequently, field permeability tests in the aquitard and the aquifer, and pumping tests in the aquifer, are still needed to determine the hydraulic conductivity values.  相似文献   

6.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

7.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A mathematical model is developed to investigate the effects of tidal fluctuations and leakage on the groundwater head of leaky confined aquifer extending an infinite distance under the sea. The leakages of the offshore and inland aquitards are two dominant factors controlling the groundwater fluctuation. The tidal influence distance from the coast decreases significantly with the dimensionless leakage of the inland aquitard (ui). The fluctuation of groundwater level in the inland part of the leaky confined aquifer increases significantly with the dimensionless leakage of the offshore aquitard (uo). The influence of the tidal propagation parameter of an unconfined aquifer on the head fluctuation of the leaky confined aquifer is comparatively conspicuous when ui is large and uo is small. In other words, ignoring water table fluctuation of the unconfined aquifer will give large errors in predicting the fluctuation, time lag, and tidal influence distance of the leaky confined aquifer for large ui and small uo. On the contrary, the influence of the tidal propagation parameter of a leaky confined aquifer on the head fluctuation of the leaky confined aquifer is large for large uo and small ui.  相似文献   

9.
The characterization of heterogeneity in hydraulic conductivity (K) is a major challenge for subsurface remediation projects. There are a number of field studies that compare the K estimates obtained using various techniques, but to our knowledge, no field‐based studies exists that compare the performance of estimated K heterogeneity fields or the associated characterization costs. In this paper, we compare the costs of characterizing the three‐dimensional K heterogeneity and its uncertainty estimates of a glaciofluvial aquifer‐aquitard sequence at a 15 m × 15 m × 18 m field site situated on the University of Waterloo campus. We compare geostatistical analysis of high resolution permeameter K data obtained from repacked core samples in five boreholes and hydraulic tomography analysis of four pumping tests consisting of up to 41 monitoring points per test. Aside from the comparison of costs, we also assess the performance of each method by predicting several pumping tests. Our analysis reveals that hydraulic tomography is somewhat more costly than the geostatistical analysis of high resolution permeameter K data due to the higher capital costs associated with the method. However, the equipment may be reused at other sites; hence these costs may be recovered over the life of the equipment. More significantly, hydraulic tomography is able to capture the most important features of the aquifer‐aquitard sequence leading to more accurate predictions of independent pumping tests. This suggests that more robust remediation systems may be designed if site characterization is performed with hydraulic tomography.  相似文献   

10.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   

11.
T.‐L. Tsai 《水文研究》2015,29(22):4779-4793
Accurate and practical calculation of aquitard consolidation is required for a reliable analysis of land subsidence caused by groundwater overexploitation in a multilayered aquifer system because aquitards are generally more compressible than aquifers are. This study proposes a coupled one‐dimensional viscoelastic–plastic consolidation model that considers the combined effect of changes in soil parameters and body force to simulate aquitard consolidation caused by hydraulic head variations in neighbouring aquifers. The proposed model uses variable total stress and simultaneously solves hydraulic head and vertical soil displacement. The constitutive relation based on the Voigt model with different elastic moduli of the spring in normally consolidated and overconsolidated soils is used to describe the viscoelastic–plastic deformation mechanism of aquitards. In addition, the proposed model considers the combined effect of variations in hydraulic conductivity, elastic moduli, and body force on the calculation of aquitard consolidation. Three hypothetical scenarios with various hydraulic head variations in aquifers are used to examine the coupled one‐dimensional viscoelastic–plastic consolidation model. The results show that neglecting plasticity and viscosity of soil causes aquitard consolidation to be respectively underestimated and overestimated. In addition, ignoring body force variation underestimates aquitard consolidation, whereas neglecting soil parameters variation overestimates aquitard consolidation. Two real case scenarios are also studied to further demonstrate the applicability of the coupled one‐dimensional viscoelastic–plastic consolidation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of wellbore‐wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6‐m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15‐month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore‐wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering‐derived wellbores. Our results suggest that the wellbore‐wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore‐wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions.  相似文献   

13.
With global warming and sea level rise, many coastal systems will experience increased levels of inundation and storm flooding, especially along sandy lowland coastal areas, such as the Northern Adriatic coast (Italy). Understanding how extreme events may directly affect groundwater hydrology in shallow unconfined coastal aquifers is important to assess coastal vulnerability and quantify freshwater resources. This study investigates shallow coastal aquifer response to storm events. The transitory and permanent effects of storm waves are evaluated through the real time monitoring of groundwater and soil parameters, in order to characterize both the saturated and unsaturated portions of the coastal aquifer of Ravenna and Ferrara (southern Po Delta, Italy). Results highlight a general increase in hydraulic head and soil moisture, along with a decrease in groundwater salinity and pore water salinity due to rainfall infiltration during the 2 days storm event. The only exceptions are represented by the observation wells in proximity to the coastline (within 100 m), which recorded a temporary increase in soil and water salinity caused by the exceptional high waves, which persist on top of the dune crest during the storm event. This generates a saline plume that infiltrates through the vadose zone down to the saturated portion of the aquifer causing a temporary disappearance of the freshwater lens generally present, although limited in size, below the coastal dunes. Despite the high hydraulic conductivity, the aquifer system does not quickly recover the pre‐storm equilibrium and the storm effects are evident in groundwater and soil parameters after 10 days past the storm overwash recess.  相似文献   

14.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   

15.
Abstract

A borehole is developed in a shallow multi-layered aquifer and used to derive the porosity, specific storage and hydraulic conductivity of the aquitard. Local values of hydrodynamical parameters are estimated from petrophysical analysis of core samples, and the empirical relationship between porosity and permeability. Vertical diffusivity is determined from the response of the aquitard to a loading cyclic signal using pressure records at different depths. Hydraulic conductivities deduced from the petrophysical analysis ranged from 10?8 to 10?10 m s?1 and are comparable with those of facies of marine/lacustrine clay observed in samples. The permeability values calculated based on diffusivity are within the range 10?9 to 10?11 m s?1 with a quasi-systematic bias of one order of magnitude. These values are average for a larger part of the aquitard and correspond to an integrated value. The methodology retained for the aquitard characterization is discussed with emphasis on the implications for the management of a complex aquifer system.

Citation Larroque, F., Cabaret, O., Atteia, O., Dupuy, A., and Franceschi, M., 2013. Vertical heterogeneities of hydraulic aquitard parameters: preliminary results from laboratory and in situ monitoring. Hydrological Sciences Journal, 58 (4), 912–929.  相似文献   

16.
Pesticide residuals after point‐source pesticide spills in clay‐rich aquitards may potentially affect underlying groundwater for many decades due to slow release of accumulated pollution in the clayey matrix material of the aquitard. In this study, we evaluated factors behind different degrees of accumulation of phenoxy acids (MCPP, dichlorprop, 2,4‐D MCPA) and triazines (simazine and terbutylazine) observed in an old pesticide pollution described by Jørgensen et al. (2016a, this issue). By using leaching experiments, it was shown that a zone of maximum concentrations of MCPP and dichlorprop (mg/L) observed by Jørgensen et al. (2016a, this issue) represented accumulated potentially mobile pollution in anaerobic, however largely immobile pore water of the clayey matrix in the upper few meters of the unoxidized aquitard zone. By using sorption experiments, we determined 9 to16 times higher mobility by diffusion and flow for the phenoxy acids (R = 1 to 2) than for the triazines (R = 9 to 16) in the clayey matrix material of the aquitard. This indicated that more rapid and greater accumulation could occur for the phenoxy acids in the clayey matrix than for the triazines. In contrast, the relative mobility of the phenoxy acids and triazines was much closer in sand‐filled fractures and thin sand layers/lamina in the clay, suggesting that the migration of the same compounds along these textural preferential flow paths into the underlying aquifer was less different. Despite that a greater mass had originally been spilled of 2,4‐D and MCPA having similar mobility as the accumulated MCPP and dichlorprop, these compounds were not accumulated in the zone of maximum concentrations. It is suggested that the controls, which initially allowed for the observed separate accumulation of MCPP and dichlorprop as a zone of maximum pollution, were due to the combination of high persistence and high mobility for these specific pesticides in the clayey till matrix material of the aquitard. The investigation showed that over time the initial high concentrations of the accumulated phenoxy acids (MCPP, dichlorprop) transformed into high concentrations of related mobile degradation products (e.g., 4‐CPP and 2‐CPP), which extended the total time of groundwater pollution beyond the disappearance of the original phenoxyacids.  相似文献   

17.
The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher‐order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter‐expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.  相似文献   

18.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we examine the maximum net extraction rate from the novel arrangement of an injection‐extraction well pair in a coastal aquifer, where fresh groundwater is reinjected through the injection well located between the interface toe and extraction well. Complex potential theory is employed to derive a new analytical solution for the maximum net extraction rate and corresponding stagnation‐point locations and recirculation ratio, assuming steady‐state, sharp‐interface conditions. The injection‐extraction well‐pair system outperforms a traditional single extraction well in terms of net extraction rate for a broad range of well placement and pumping rates, which is up to 50% higher for an aquifer with a thickness of 20 m, hydraulic conductivity of 10 m/d, and fresh water influx of 0.24 m2/d. Sensitivity analyses show that for a given fresh water discharge from an inland aquifer, a larger maximum net extraction is expected in cases with a smaller hydraulic conductivity or a smaller aquifer thickness, notwithstanding physical limits to drawdown at the pumping well that are not considered here. For an extraction well with a fixed location, the optimal net extraction rate linearly increases with the distance between the injection well and the sea, and the corresponding injection rate and recirculation ratio also increase. The analytical analysis in this study provides initial guidance for the design of well‐pair systems in coastal aquifers, and is therefore an extension beyond previous applications of analytical solutions of coastal pumping that apply only to extraction or injection wells.  相似文献   

20.
The primary objective of this study was to evaluate use of the hydraulic profiling tool‐groundwater sampler (HPT‐GWS) log data as an indicator of water quality (level of dissolved ionic species) in an alluvial aquifer. The HPT‐GWS probe is designed for direct push advancement into unconsolidated formations. The system provides both injection pressure logs and electrical conductivity (EC) logs, and groundwater may be sampled at multiple depths as the probe is advanced (profiling). The combination of these three capabilities in one probe has not previously been available. During field work it was observed that when HPT corrected pressure (Pc) indicates a consistent aquifer unit then bulk formation EC can be used as an indicator of water quality. A high correlation coefficient (R 2 = 0.93) was observed between groundwater specific conductance and bulk formation EC in the sands and gravels of the alluvial aquifer studied. These results indicate that groundwater specific conductance is exerting a controlling influence on the bulk formation EC of the coarse‐grained unit at this site, and probably many similar sites, consistent with Archie's Law. This simple relationship enables the use of the EC and Pc logs, with targeted water samples and a minimum of core samples, to rapidly assess groundwater quality over extended areas at high vertical resolution. This method was used to identify both a brine impacted zone at the base of the aquifer investigated and a groundwater recharge lens developing below storm water holding ponds in the upper portion of the same aquifer. Sample results for trace level, naturally occurring elements (As, Ba, U) further demonstrate the use of this system to sample for low level groundwater contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号