首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
We used a 54-year (1950–2003) ice scar chronology constructed from damaged trees to investigate relationships between large scale hydro-climatic conditions and mechanical breakup magnitude in the Necopastic River watershed (James Bay, northern Québec). Our objectives were: (1) to identify hydrologic and climatic variables that explain variations in mechanical breakup magnitude at the watershed scale, (2) to organize these variables in terms of importance and (3) to construct a predictive model for ice-floods in the Necopastic watershed. We used parametric correlation analysis to measure the degree of linear association between variables and classification trees (CT) coupled with a cross-validation approach to construct the predictive model and to organize variables according to their importance. In the Necopastic watershed, the type and magnitude of breakups are determined by an interaction between forces that maintain the ice cover in place and forces that tend to dislodge it. In contrast with lakes, early and rapidly rising floods, rather than abnormally high flood discharge, create conditions that favour intense mechanical breakups. Moreover, cold and snowy spring conditions during high positive Arctic Oscillation (AO) indices delay the thermal degradation of the ice cover and preserve its mechanical properties over longer time periods.  相似文献   

4.
Abstract

River ice jams can produce extreme flood events with major social, economic and ecological impacts throughout Canada. Ice breakup and jamming processes are briefly reviewed and shown to be governed by the flow hydrograph, the thickness and strength of the winter ice cover, and the stream morphology. These factors are directly or indirectly influenced by weather conditions which implies potential impacts of climate change and variability on the severity of ice-jamming. Relevant work has to date focused on simple measures of climatic effects, such as the timing of freeze-up and breakup, and indicates trends that are consistent with concomitant changes in air temperature. More recently, it has been found that increased incidence of mid-winter breakup events and higher freshet flows in certain parts of Canada could enhance the frequency and severity of ice jams. Possible future trends under climate warming scenarios are discussed and associated impacts identified in a general manner.  相似文献   

5.
Abstract

In the current context of climatic variability, it is important to quantify the impact on the environment. This study deals with an analysis of climatic data and land-use changes in terms of the impacts on flood recurrence based on multisource data. The study area covers the mouth of the Saint-François River (southern Québec, Canada), where spring floods and ice jams are a recurring problem. The flood frequency analysis shows an increase in flooding over recent decades, attributable to an increase in winter temperatures that has the effect of causing ice jams earlier in the year. Regarding land-use changes, a small decrease in agricultural surface areas is observed, from 53% to 39%, along with increases in forest and urban surface areas from 27% to 38% (forest) and 3% to 5% (urban) between 1928 and 2005. In a context of continuing climate warming, more pronounced inter-annual variations are to be expected along with a higher incidence of flooding.

Editor Z.W. Kundzewicz

Citation Ouellet, C., Saint-Laurent, D. and Normand, F., 2012. Flood events and flood risk assessment in relation to climate and land-use changes: Saint-François River, southern Québec, Canada. Hydrological Sciences Journal, 57 (2), 313–325.  相似文献   

6.
Lupachev  Yu. V. 《Water Resources》2001,28(2):220-223
The dynamic type of ice drift development is found to dominate in the mouth zones of the Northern Dvina and Pechora rivers in the period of spring ice break. The ice drift is accompanied by the formation of ice jams in the mouth, the most common among them being jams of arched and wedge type. The jams are a common cause of flooding of towns and settlements in the region. The particular features of ice breaking in the mouths of northern rivers are discussed along with the regularities of ice jam formation during ice drift. The formation of jams is shown to be associated with stable retardation of ice in the sites of river channels that have specific morphological characteristics or to be caused by drifting ice mass running into solid ice fields in lower parts of river delta arms.  相似文献   

7.
The mouth of the Vistula River, which is a river outlet located in tideless area, is analyzed. The Vistula River mouth is a man-made, artificial channel which was built in the 19th century in order to prevent the formation of ice jams in the natural river delta. Since the artificial river outlet was constructed, no severe ice-related flood risk situations have ever occurred. However, periodic ice-related phenomena still have an impact on the river operation. In the paper, ice processes in the natural river delta are presented first to refer to the historical jams observed in the Vistula delta. Next, the calibrated mathematical model was applied to perform a series of simulations in the Vistula River mouth for winter storm condition to determine the effects of ice on the water level in the Vistula River and ice jam potential of the river outlet.  相似文献   

8.
Reliable and prompt information on river ice condition and extent is needed to make accurate hydrological forecasts to predict ice jams breakups and issue timely flood warnings. This study presents a technique to detect and monitor river ice using observations from the MODIS instrument onboard the Terra satellite. The technique incorporates a threshold‐based decision tree image classification algorithm to process MODIS data and to determine the extent of ice. To differentiate between ice‐covered and ice‐free pixels within the riverbed, the algorithm combines observations in the visible and near‐infrared spectral bands. The developed technique presents the core of the MODIS‐based river ice mapping system, which has been developed to support National Oceanic and Atmospheric Administration NWS's operations. The system has been tested over the Susquehanna River in northeastern USA, where ice jam events leading to spring floods are a frequent occurrence. The automated algorithm generates three products: daily ice maps, weekly composite ice maps and running cloud‐free composite ice maps. The performance of the system was evaluated over nine winter seasons. The analysis of the derived products has revealed their good agreement with the aerial photography and with in situ observations‐based ice charts. The probability of ice detection determined from the comparison of the product with the high‐resolution Landsat imagery was equal to 91%. A consistent inverse relationship was found between the river discharge and the ice extent. The correlation between the discharge and the ice extent as determined from the weekly composite product reached 0.75. The developed CREST River Ice Observation System has been implemented at National Oceanic and Atmospheric Administration–Cooperative Remote Sensing Science and Technology Center as an operational Web tool allowing end users and forecasters to assess ice conditions on the river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Spyros Beltaos 《水文研究》2008,22(17):3252-3263
Since the late 1960s, a paucity of ice‐jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace–Athabasca Delta (PAD) region. Though major ice jams occur at breakup, antecedent conditions play a significant role in their frequency and severity. These conditions are partly defined by the mode of freezeup and the maximum thickness that is attained during the winter, shortly before the onset of spring and development of positive net heat fluxes to the ice cover. Data from hydrometric gauge records and from field surveys are utilized herein to study these conditions. It is shown that freezeup flows are considerably larger at the present time than before regulation, and may be responsible for more frequent formation of porous accumulation covers. Despite a concomitant rise in winter temperatures, solid‐ice thickness has increased since the 1960s. Using a simple ice growth model, specifically developed for the study area, it is shown that porous accumulation covers enhance winter ice growth via accelerated freezing into the porous accumulation. Coupled with a reduction in winter snowfall, this effect can not only negate, but reverse, the effect of warmer winters on ice thickness, thus explaining present conditions. The present model is also shown to be a useful prediction tool, especially for extrapolating incomplete data to the end of the winter. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

10.
The lower stretch of the Vistula is the most ice‐jammed river section on the North European Plain. Since 1982, the structure of hanging dams has been studied by means of a mechanical non‐core sampler. In this article, a selected of field research results of the hanging dams' structure and the degree of filling of the cross section with ice obtained during surface ice‐jam events in the years 1995–2014 are presented, along with an explanation of their causes. Surface ice jams occurred during spring snowmelt surges and ice breakups and also during freeze‐up and ice‐covered periods. Their main cause was changes in the river flow and was also those affected by anthropogenic sources. A characteristic feature of the analysed cross sections was the considerable share of the underhanging ice dam's firm accumulation with ice floes, when the cross section would be filled with ice in excess of 70%. In most cases, due to low river discharge, there was no substantial flooding damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Turutin  B. F.  Matyushenko  A. I. 《Water Resources》2001,28(2):224-228
The effect of different factors on the duration of spring ice jams and the flood water level in the Siberian rivers is considered. Observational data on the frequency of ice jams of different probabilities within some reaches of the Yenisei River are presented.  相似文献   

12.
13.
The San Antonio River Delta (SARD), Texas, has experienced two major avulsions in the past 80 years, and a number of other historical and Holocene channel shifts. The causes and consequences of these avulsions – one of which is ongoing – were examined using a combination of fieldwork, geographic information system (GIS) analysis, and historical information to identify active, semi‐active, and paleochannels and the sequence of shifting flow paths through the delta. The role of deposition patterns and antecedent morphology, large woody debris jams, and tectonic influences were given special attention. Sedimentation in the SARD is exacerbated by tectonic effects. Channel aggradation is ubiquitous, and superelevation of the channel bed above the level of backswamp areas on the floodplain is common. This creates ideal setup conditions for avulsions, and stable, cohesive fine‐grained banks favor avulsions rather than lateral migration. Flood basins between the alluvial ridges associated with the aggraded channels exist, but avulsions occur by re‐occupation of former channels found within or connected to the flood basins. Large woody debris and channel‐blocking log‐jams are common, and sometimes displace flow from the channel, triggering crevasses. However, a large, recurring log‐jam at the site of the ongoing avulsion from the San Antonio River into Elm Bayou is not responsible for the channel shift. Rather, narrow, laterally stable channels resulting from flow splits lead to accumulation of wood. Some aspects of the SARD avulsion regime are typical of other deltas, while others are more novel. These includes avulsions involving tributaries and subchannels within the delta as well as from the dominant channel; tectonic influences on delta backstepping and on channel changes within the delta; avulsions as an indirect trigger for log‐jam formation (as well as vice‐versa); and maintenance of a multi‐channel flow pattern distinct from classic anastamosing or distributary systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
To better understand the linkage between lake area change, permafrost conditions and intra‐annual and inter‐annual variability in climate, we explored the temporal and spatial patterns of lake area changes for a 422 382‐ha study area within Yukon Flats, Alaska using Landsat images of 17 dates between 1984 and 2009. Only closed basin lakes were used in this study. Among the 3529 lakes greater than 1 ha, closed basin lakes accounted for 65% by number and 50% by area. A multiple linear regression model was built to quantify the temporal change in total lake area with consideration of its intra‐annual and inter‐annual variability. The results showed that 80.7% of lake area variability was attributed to intra‐annual and inter‐annual variability in local water balance and mean temperature since snowmelt (interpreted as a proxy for seasonal thaw depth). Another 14.3% was associated with long‐term change. Among 2280 lakes, 350 lakes shrank, and 103 lakes expanded. The lakes with similar change trends formed distinct clusters, so did the lakes with similar short term intra‐annual and inter‐annual variability. By analysing potential factors driving lake area changes including evaporation, precipitation, indicators for regional permafrost change, and flooding, we found that ice‐jam flooding events were the most likely explanation for the observed temporal pattern. In addition to changes in the frequency of ice jam flooding events, the observed changes of individual lakes may be influenced by local variability in permafrost distributions and/or degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de‐glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non‐linear response of firn and ice to warming; three‐dimensional warming of subsurface bedrock and its relation to site geology; de‐glaciation accompanied by exposure of new sediment; and combined short‐term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag‐time effects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
River ice break‐up is known to have important morphological, ecological and socio‐economic effects on cold‐regions river environments. One of the most persistent effects of the spring break‐up period is the occurrence of high‐water events. A return‐period assessment of maximum annual nominal water depths occurring during the spring break‐up and open‐water season at 28 Water Survey of Canada hydrometric sites over the 1913–2002 time period in the Mackenzie River basin is presented. For the return periods assessed, 13 (14) stations are dominated by peak events occurring during the spring break‐up (open‐water) season. One location is determined to have a mixed signal. A regime classification is proposed to separate ice‐ and open‐water dominated systems. As part of the regime classification procedure, specific characteristics of return‐period patterns including alignment, and difference between the 2 and 10‐year events are used to identify regime types. A dimensionless stage‐discharge plot allows for a contrast of the relative magnitudes of flows required to generate maximum nominal water‐depth events in the different regimes. At sites where discharge during the spring break‐up is approximately one‐quarter or greater than the magnitude of the peak annual discharge, nominal water depths can be expected to exceed those occurring during the peak annual discharge event. Several physical factors (location, basin area, stream order, gradient, river orientation, and climate) are considered to explain the differing regimes and discussed relative to the major sub‐regions of the MRB. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   

18.
The Athabasca River is the largest unregulated river in Alberta, Canada, with ice jams frequently occurring in the vicinity of Fort McMurray. Modelling tools are desired to forecast ice‐related flood events. Multiple model combination methods can often obtain better predictive performances than any member models due to possible variance reduction of forecast errors or correction of biases. However, few applications of this method to river ice forecasting are reported. Thus, a framework of multiple model combination methods for maximum breakup water level (MBWL) Prediction during river ice breakup is proposed. Within the framework, the member models describe the relations between the MBWL (predicted variable) and their corresponding indicators (predictor variables); the combining models link the relations between the predicted MBWL by each member model and the observed MBWL. Especially, adaptive neuro‐fuzzy inference systems, artificial neural networks, and multiple linear regression are not only employed as member models but also as combining models. Simple average methods (SAM) are selected as the basic combining model due to simple calculations. In the SAM, an equal weight (1/n) is assigned to n member models. The historical breakup data of the Athabasca River at Fort McMurray for the past 36 years (1980 to 2015) are collected to facilitate the comparison of models. These models are examined using the leave‐one‐out cross validation and the holdout validation methods. A SAM, which is the average output from three optimal member models, is selected as the best model as it has the optimal validation performance (lowest average squared errors). In terms of lowest average squared errors, the SAM improves upon the optimal artificial neural networks, adaptive neuro‐fuzzy inference systems, and multiple linear regression member models by 21.95%, 30.97%, and 24.03%, respectively. This result sheds light on the effectiveness of combining different forecasting models when a scarce river ice data set is investigated. The indicators included in the SAM may indicate that the MBWL is affected by water flow conditions just after freeze‐up, overall freezing conditions during winter, and snowpack conditions before breakup.  相似文献   

19.
The hypothesis tested in this study is that ice‐scars recorded by lakeshore tree stands can be used as an integrative proxy indicator of the overall hydrodynamic disturbance regimes affecting northern lakeshores. A 2‐km‐long shore segment was divided into 21 sections according to shore orientation and slope. An ice‐scar chronology and a wave exposure index value were obtained for each shore section. A significant relationship was found between ice‐scar chronology and wave exposure index, which indicates that the mechanical action and physical force of ice activity mainly depend on the same environmental factors determining exposure to wave action (i.e. fetch, wind direction and velocity, and shore slope). The spatial and temporal variability of ice‐scar chronology features also corresponded to the distribution of geomorphological features associated with ice activity along the shoreline. Analysis of the hydrological signal associated with these ice‐scar chronology features indicated that an increase in ice‐push frequency observed in the 1930s can be associated to an increase in wave action related to more frequent spring floods maintaining high lake levels during the ice‐free period. This study demonstrates that ice‐scars have strong potential as proxy indicators of shore exposure and provide a temporal frame to reconstruct the history of lakeshore disturbance regimes at a local scale. Together, ice‐scars and wave exposure index provide essential information to interpret the evolution of lakeshore vegetation mosaics in time and space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
During the past 1000 years, there had been sev-eral widespread climate events on the earth, such asthe ‘Medieval Warm Period’, the ‘Little Ice Age’ andthe recent warming from the later part of the nine-teenth century onward[1,2]. To better understand thedetails of climatic history on a regional scale, morehigh-resolution, millennia-length climate reconstruc-tions are needed by intensive, multiproxy investigationof ice cores, sediments of loess and lakes, corals andtree-rings. Since …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号