首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
High‐altitude inland lakes in High Mountain Asia (HMA) are key indicators to climate change and variability as a result of mostly closed watersheds and minimal disturbance by human activities. However, examination of the spatial and temporal pattern of lake changes, especially for water‐level variations, is usually limited by poor accessibility of most lakes. Recently, satellite altimeters have demonstrated their potential to monitor water level changes of terrestrial water bodies including lakes and rivers. By combining multiple satellite altimetry data provided by the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) and Geoscience Laser Altimeter System (GLAS) instrument on the NASA Ice, Cloud and land Elevation satellite (ICESat), this study examined water level changes of typical lakes in HMA at a longer timescale (in the 1990s and 2000s) compared with earlier studies on Tibetan lakes. Cross‐evaluation of the radar altimetry data from LEGOS and laser altimetry data from ICESat/GLAS shows that they were in good agreement in depicting inter‐annual, seasonal and abrupt changes of lake level. The long‐term altimetry measurements reveal that water‐level changes of the 18 lakes showed remarkable spatial and temporal patterns that were characterized by different trends, onsets of rapid rises and magnitudes of inter‐annual variations for different lakes. During the study period, lakes in the central and northern HMA (15 lakes) showed a general growth tendency, while lakes in South Tibet (three lakes) showed significant shrinking tendency. Lakes in Central Tibet experienced rapid and stable water‐level rises around mid‐1990s followed by slowing growth rates after 2006. In contrast, the water‐level rises of lakes in the northern and north‐eastern Tibetan Plateau were characterized by abrupt increases in specific years rather than gradual growth. Meteorological data based on station observations indicate that the annual changes of water level showed strongly correlated with precipitation and evaporation but may not evidently related to the glacier melting induced by global warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite‐derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modelling. We observed gradients in water surface elevation between neighbouring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to ‘fill‐and‐spill’ over topographic depressions (surface sills), as we observed for the Twelvemile‐Buddy Lake pair following a May 2013 ice‐jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill‐and‐spill) to shallow groundwater flow (‘fill‐and‐seep’). Such a shift is possible in the next several hundred years of ground surface warming and may bring about more synchronous water level changes between neighbouring lakes following large flood events. This relationship offers a potentially useful tool, well suited to remote sensing, for identifying long‐term changes in shallow groundwater flow resulting from thawing of permafrost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Both the inflow and outflow of supra‐permafrost water to lakes play important roles in the hydrologic process of thermokarst lakes. The accompanying thermal effects on the adjacent permafrost are required for assessing their influences on the development of thermokarst lakes. For these purposes, the lake water level, temperature dynamics, and supra‐permafrost water flow of a lake were monitored on the Qinghai‐Tibet Plateau. In addition, the spatial and temporal variation of the active layer thickness and permafrost distribution around the lake were investigated by combining ground penetrating radar, electrical resistivity tomography, and borehole temperature monitoring. The results revealed that the yearly unfrozen supra‐permafrost water flow around the lake lasted approximately 5 months. The temperature and water level measurements during this period indicate that the lake water was recharged by relatively colder supra‐permafrost water from the north‐western lakeshore and was discharged through the eastern lakeshore. This process, accompanied by heat exchange with the underlying permafrost, might cause a directional difference of the active layer thickness and permafrost characteristics around the lake. Specifically, the active layer thickness variation was minimal, and the ice‐rich permafrost was found adjacent to the lakeshore along the recharge groundwater pathways, whereas a deeper active layer and ice‐poor permafrost were observed close to the lakeshore from which the warm lake water was discharged. This study suggests that the lateral flow of warm lake water can be a major driver for the rapid expansion of thermokarst lakes and provides clues for evaluating the relationships between the thermokarst expansion process and climate warming.  相似文献   

7.
Potential future changes in lake physical processes (e.g. stratification and freezing) can be assessed through exploring their sensitivity to climate change, and assessing the current vulnerability of different lake types to plausible changes in meteorological drivers. This study quantifies the impacts of climate change and sensitivity of lake physical processes within a large (5100 km2) Precambrian Shield catchment in south‐central Ontario. Historic regional relationships are established between climate drivers, lake morphology, and lake physical changes through generalized linear modelling (GLM), and are used to quantify likely changes in timing of ice phenology and lake stratification across 72 lakes under a range of future climate models and scenarios. In response to projections of increased temperature (ensemble mean of +3.3 °C), both earlier ice‐off and onset of summer stratification were projected, with later ice‐on and fall turnover compared to the baseline. Process sensitivity to climate change varied by lake type; shallower lakes with a smaller volume (less than 15 m deep and less than 0.05 km3) were more sensitive to processes associated with lake heating (stratification onset and ice‐off), and deeper lakes with a larger surface area (greater than 30 m deep and greater than 1000 ha) were more sensitive to processes associated with lake cooling (fall turnover and ice‐on). These results indicate that whereas small lakes are vulnerable to climate warming because of changes that occur in spring and summer, larger lakes are particularly sensitive during the fall. The findings suggest that lake morphology and associated sensitivity should be considered in the development of sustainable lake management strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Permafrost degradation associated with the expansion of thermokarst lakes is commonly interrupted by catastrophic drainage. Subsequently, in tundra areas, permafrost aggradation in drained basins leads to uneven topography characterized by raised centres and wet, depressed margins. The genesis of such topography has been investigated in Old Crow Flats (OCF), a glaciolacustrine plain in the continuous permafrost of northern Yukon. The thermokarst lakes of OCF have a mean depth of only 1.5 m because excess ice is dominantly found only in the uppermost 10 m of the ground. Surface conditions were measured in three drained thermokarst lake basins, including relief, snow conditions, ground temperatures, near‐surface ground ice, and sediment stratigraphy. Four nearby lakes provided information on wave base, shore recession patterns, and bathymetry before drainage: the bottoms of these lakes were not raised in the centre. An elevation difference of up to 2 m was recorded between drained basin margins and centres but was not associated with variations in ice‐wedge density or segregated ice content. Hence basin topography was not controlled by differences in volumetric ground‐ice content between margins and centres. We propose that transport of fine sediment away from eroding lake margins during lake development is the primary mechanism for the genesis of depressed margins and raised centres in drained basins of OCF. Over time, the transport results in the deposition of more and finer sediment in the central parts of lakes, where the lake bottom has subsided below wave base, than at the shallow margins, where resuspension by wave action occurs frequently. This difference in sediment volume is revealed in the topography after drainage, when permafrost aggrades in the lake‐bottom sediment and underlying talik. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Streams in the McMurdo Dry Valleys (MDVs) of Antarctica moderate an important hydrologic and biogeochemical connection between upland alpine glaciers, valley‐bottom soils, and lowland closed‐basin lakes. Moreover, MDV streams are simple but dynamic systems ideal for studying interacting hydrologic and ecological dynamics. This work synthesizes 20 years of hydrologic data, collected as part of the MDVs Long‐Term Ecological Research project, to assess spatial and temporal dynamics of hydrologic connectivity between glaciers, streams, and lakes. Long‐term records of stream discharge (Q), specific electrical conductance (EC), and water temperature (T) from 18 streams were analysed in order to quantify the magnitude, duration, and frequency of hydrologic connections over daily, annual, and inter‐annual timescales. At a daily timescale, we observe predictable diurnal variations in Q, EC, and T. At an annual timescale, we observe longer streams to be more intermittent, warmer, and have higher median EC values, compared to shorter streams. Longer streams also behave chemostatically with respect to EC, whereas shorter streams are more strongly characterized by dilution. Inter‐annually, we observe significant variability in annual runoff volumes, likely because of climatic variability over the 20 record years considered. Hydrologic connections at all timescales are vital to stream ecosystem structure and function. This synthesis of hydrologic connectivity in the MDVs provides a useful end‐member template for assessing hydrologic connectivity in more structurally complex temperate watersheds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Lakes are a prominent geographic feature in northern landscapes and play an important role in understanding regional climate systems. In order to better model changes within climate systems, it is important to study lake ice processes. Although the availability of records for lake ice through ground measurements has declined in recent years, the increased use of remote sensing provides an alternative to this. Using a preclassified snow and ice remote sensing product with a 500‐m resolution, based on images from the Moderate Resolution Imaging Spectroradiometer (MODIS/MOD10A1), and the use of measured and reanalysis temperature data, this study evaluated lake ice phenology dates in connection to recent trends in temperature and 0 °C isotherms within Ontario and Manitoba between 2001 and 2014. Temperature trends indicated both regional warming and cooling, with significant cooling observed in Southern Ontario (p < .05) and significant warming in Southern Manitoba (p < .1) during the fall. Spatial analysis of the trends in the lake ice data showed significant clustering of significant trends in ice on dates (p < .01). When analysing the trends in ice phenology in connection to the trends in temperature, it was found that 70% of lakes experienced a change in the ice on date with the expected change in temperature and 85% of lakes for ice off date. When shifting ice on and ice off dates are investigated in relation to 0 °C isotherms, it was seen that 80% of ice on dates and 100% of ice off dates shifted in sync with the isotherm dates. This demonstrates that the ice phenology of lakes in Ontario and Manitoba, Canada, is responding to short‐term variability in temperature. The MODIS product could be used to investigate ice phenology on a large scale and contribute towards expanding existing records of ice phenology. Establishing long‐term ice records could be a valuable asset for other research ranging from water balance studies to the response of lake biota under changing climate.  相似文献   

12.
Glacier and permafrost hazards such as glacial‐lake outburst floods and rock–ice avalanches cause significant socio‐economic damages worldwide, and these processes may increase in frequency and magnitude if the atmospheric temperature rises. In the extratropical Andes nearly 200 human deaths were linked to these processes during the twentieth century. We analysed bibliographical sources and satellite images to document the glacier and permafrost dynamics that have caused socio‐economic damages in this region in historic time (including glacial lake outburst floods, ice and rock–ice avalanches and lahars) to unravel their causes and geomorphological impacts. In the extratropical Andes, at least 15 ice‐dammed lakes and 16 moraine‐dammed lakes have failed since the eighteenth century, causing dozens of floods. Some floods rank amongst the largest events ever recorded (5000 × 106 m3 and 229 × 106 m3, respectively). Outburst flood frequency has increased in the last three decades, partially as a consequence of long‐term (decades to centuries) climatic changes, glaciers shrinkage, and lake growth. Short‐term (days to weeks) meteorological conditions (i.e. intense and/or prolonged rainfall and high temperature that increased meltwater production) have also triggered outburst floods and mass movements. Enormous mass failures of glaciers and permafrost (> 10 × 106 m3) have impacted lakes, glaciers, and snow‐covered valleys, initiating chain reactions that have ultimately resulted in lake tsunamis and far‐reaching (> 50 km) flows. The eruption of ice‐covered volcanoes has also caused dozens of damaging lahars with volumes up to 45 × 106 m3. Despite the importance of these events, basic information about their occurrence (e.g. date, causes, and geomorphological impact), which is well established in other mountain ranges, is absent in the extratropical Andes. A better knowledge of the processes involved can help to forecast and mitigate these events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Permafrost degradation in the peat‐rich southern fringe of the discontinuous permafrost zone is catalysing substantial changes to land cover with expansion of permafrost‐free wetlands (bogs and fens) and shrinkage of forest‐dominated permafrost peat plateaux. Predicting discharge from headwater basins in this region depends upon understanding and numerically representing the interactions between storage and discharge within and between the major land cover types and how these interactions are changing. To better understand the implications of advanced permafrost thaw‐induced land cover change on wetland discharge, with all landscape features capable of contributing to drainage networks, the hydrological behaviour of a channel fen sub‐basin in the headwaters of Scotty Creek, Northwest Territories, Canada, dominated by peat plateau–bog complexes, was modelled using the Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. The model construction was based on field water balance observations, and performance was deemed adequate when evaluated against measured water balance components. A sensitivity analysis was conducted to assess the impact of progressive permafrost loss on discharge from the sub‐basin, in which all units of the sub‐basin have the potential to contribute to the drainage network, by incrementally reducing the ratio of wetland to plateau in the modelled sub‐basin. Simulated reductions in permafrost extent decreased total annual discharge from the channel fen by 2.5% for every 10% decrease in permafrost area due to increased surface storage capacity, reduced run‐off efficiency, and increased landscape evapotranspiration. Runoff ratios for the fen hydrological response unit dropped from 0.54 to 0.48 after the simulated 50% permafrost area loss with a substantial reduction of 0.47 to 0.31 during the snowmelt season. The reduction in peat plateau area resulted in decreased seasonal variability in discharge due to changes in the flow path routing, with amplified low flows associated with small increases in subsurface discharge, and decreased peak discharge with large reductions in surface run‐off.  相似文献   

14.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   

15.
In this study, the Cold Regions Hydrological Modelling platform was used to create an alpine snow model including wind redistribution of snow and energy balance snowmelt to simulate the snowpack over the period 1996–2009 in a small (33 ha) snow‐dominated basin in the Spanish Pyrenees. The basin was divided into three hydrological response units (HRUs), based on contrasting physiographic and aerodynamic characteristics. A sensitivity analysis was conducted to calculate the snow water equivalent regime for various combinations of temperature and precipitation that differed from observed conditions. The results show that there was large inter‐annual variability in the snowpack in this region of the Pyrenees because of its marked sensitivity to climatic conditions. Although the basin is small and quite homogeneous, snowpack seasonality and inter‐annual evolution of the snowpack varied in each HRU. Snow accumulation change in relation to temperature change was approximately 20% for every 1 °C, and the duration of the snowpack was reduced by 20–30 days per °C. Melting rates decreased with increased temperature, and wind redistribution of snow was higher with decreased temperature. The magnitude and sign of changes in precipitation may markedly affect the response of the snowpack to changes in temperature. There was a non‐linear response of snow to individual and combined changes in temperature and precipitation, with respect to both the magnitude and sign of the change. This was a consequence of the complex interactions among climate, topography and blowing snow in the study basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Glacier retreat results in the formation and expansion, and sometimes outburst, of moraine‐dammed lakes worldwide. Sudden outburst floods from such lakes have caused enormous damage to settlements and infrastructure located downstream. Such lakes located in the Himalayan region are highly prone to outburst floods due to climatic conditions and geotectonic settings. In this study, multi‐temporal Landsat images from 2002–2014, digital elevation models (DEMs), geomorphic analysis and modelling were used to assess the changes in glacial lakes and the outburst susceptibility of moraine‐dammed lakes in the Chandra–Bhaga basin of the north‐western Indian Himalaya. An inventory of lakes was developed using satellite data, thematic maps and ground‐based investigations for the Chandra–Bhaga basin. The total area of all glacial lakes (size >5000 m2) increased by 47% from 2002 to 2014, with a pronounced increase of 57% for moraine‐dammed lakes. Sixteen moraine‐dammed lakes were identified and assessed for outburst susceptibility using the analytic hierarchy process (AHP). Forty‐one reported glacial lake outburst flood (GLOF) events from moraine‐dammed lakes in Himalayan regions were analysed, culminating in the identification of 11 critical factors for assessing outburst susceptibility using the AHP, including those related to the lake area and change, surrounding terrain characteristics, dam geometry, regional seismicity and rainfall history. The past three GLOF events in the Himalayan region were used to validate the method and to classify moraine‐dammed lakes as having very high, high, medium or low outburst susceptibility. Eight lakes classified as very high and high outburst susceptibility should be further investigated in detail. The proposed AHP‐based approach is suitable for first‐order identification of critical lakes for prioritising future detailed investigation and monitoring of moraine‐dammed glacial lakes in the Himalayan region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans‐boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans‐boundary basin in the Central Himalayas, from 1976 to 2010 based on multi‐temporal Landsat images. Studied glacial lakes are classified as glacier‐fed lakes and non‐glacier‐fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier‐fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier‐fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non‐glacier‐fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Lake eutrophication is a large and growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients. Improved quantification of nutrient inputs is required to address this problem, including better determination of exchanges between groundwater and lakes. This first of a two‐part review provides a brief history of the evolution of the study of groundwater exchange with lakes, followed by a listing of the most commonly used methods for quantifying this exchange. Rates of exchange between lakes and groundwater compiled from the literature are statistically summarized for both exfiltration (flow from groundwater to a lake) and infiltration (flow from a lake to groundwater), including per cent contribution of groundwater to lake‐water budgets. Reported rates of exchange between groundwater and lakes span more than five orders of magnitude. Median exfiltration is 0.74 cm/day, and median infiltration is 0.60 cm/day. Exfiltration ranges from near 0% to 94% of input terms in lake‐water budgets, and infiltration ranges from near 0% to 91% of loss terms. Median values for exfiltration and infiltration as percentages of input and loss terms of lake‐water budgets are 25% and 35%, respectively. Quantification of the groundwater term is somewhat method dependent, indicating that calculating the groundwater component with multiple methods can provide a better understanding of the accuracy of estimates. The importance of exfiltration to a lake budget ranges widely for lakes less than about 100 ha in area but generally decreases with increasing lake area, particularly for lakes that exceed 100 ha in area. No such relation is evident for lakes where infiltration occurs, perhaps because of the smaller sample size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号