首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi‐channel river pattern under natural discharge conditions. We developed a semi‐automatic method to derive a chain‐like directional network from images that represent the multi‐channel river and to connect individual network elements through time. The Jamuna River was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel, while upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low‐flow and high‐flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna River and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterization of river channel networks, highlighting properties and tendencies that have morphological significance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This work presents results from two complementary and interconnected approaches to study water temperature and salinity patterns in an estuarine tidal channel. This channel is one of the four main branches of the Ria de Aveiro, a shallow lagoon located in the Northwest coast of the Iberian Peninsula. Longitudinal and cross-sectional fields of water temperature and salinity were determined by spatial interpolation of field measurements. A numerical model (Mohid) was used in a 2D depth-integrated mode in order to compute water temperature and salinity patterns. The main purpose of this work was to determine the horizontal patterns of water temperature and salinity in the study area, evaluating the effects of the main forcing factors. The field results were depth-integrated and compared to numerical model results. These results obtained using extreme tidal and river runoff forcing, are also presented. The field results reveal that, when the river flow is weak, the tidal intrusion is the main forcing mechanism, generating saline and thermal fronts which migrate with the neap/spring tidal cycle. When the river flow increases, the influence of the freshwater extends almost as far as the mouth of the lagoon and vertical stratification is established. Results of numerical modelling reveal that the implemented model reproduces quite well the observed horizontal patterns. The model was also used to study the hydrology of the study area under extreme forcing conditions. When the model is forced with a low river flow (1 m3 s−1) the results confirm that the hydrology is tidally dominated. When the model is forced with a high river flow (1,000 m3 s−1) the hydrology is dominated by freshwater, as would be expected in such an area.  相似文献   

4.
Abstract

Saltwater intrusion is a naturally occurring phenomenon that is exacerbated significantly by excessive groundwater exploitation in coastal aquifers. In order to determine the extent of saltwater intrusion in a karstified coastal aquifer in Crete, Greece, a three-dimensional, density-dependent groundwater flow and transport model was developed and compared to the more traditional sharp-interface approach. The karstified medium was modelled using a combination of the equivalent porous medium approach (for lower-order fractures) and a discrete fracture approach (for the main fractures/faults). The model takes into consideration the geomorphologic characteristics of the karstic system, such as the depth and orientation of the fault network, and the diffusion phenomena associated with the variable densities of freshwater and saltwater—parameters that create a complex system, inducing uncertainty in the model. The model results showed that the orientation of the fractures, the pumping activity and the fluid density effects drive the seawater intrusion front asymmetrically inland.

Editor Z.W. Kundzewicz

Citation Dokou, Z. and Karatzas, G.P., 2012. Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrological Sciences Journal, 57 (5), 985–999.  相似文献   

5.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   

6.
枯水期咸潮入侵已经严重威胁到了感潮河流区域供水安全.本文通过构建避咸蓄淡供水模型,耦合了咸度预测、河库联合供水调度和供水安全分析模块,为依赖感潮河流为水源地的区域供水安全管理提供了一种整体思路和决策方法.以面向粤港澳大湾区珠海东部及澳门的珠江三角洲磨刀门水道取供水为例,基于潮汐、径流和风等因子及咸度实测数据,较好地拟合了基于BP神经网络的咸度预测模型,及含氯度与超标时间的曲线函数,建立了上游来水和咸度超标时间之间的联系,得到了避咸蓄淡取水时机.咸度预测与当地河库联合供水调度相结合,得到了上游枯水期来水过程的当地区域供需平衡状况.枯水期不考虑水库调蓄的资源性缺水临界需水量为3.22亿m3,水库参与调蓄的工程性缺水临界需水量为3.75亿m3.通过供水安全分析模块,基于设定的风险阈值和临界阈值识别出了不同需水规模的上游来水临界流量特征.对于当地规划的需水规模4.23亿m3,期望上游枯水期临界流量均值约为3372 m3/s.整体上来说,需水规模越大,对上游来水期望的临界流量越大,但同时还与枯水期流量分布有关.  相似文献   

7.
Regularities in processes of seawater intrusion into the rivers of Senegal, Saloum, Gambia, and Casamance in West Africa are analyzed. The seawater intrusion during the low-flow period, which is a common phenomenon for the lower reaches of these rivers, has taken on extreme features in the course of the severe drought that occurred in West Africa in the 1970s–1980s. The processes of progressing water salinization in estuaries under the impact of drastic reduction of atmospheric precipitation and river runoff, considerable evaporation water losses, and tides are described. Due consideration is given to the unique hydrological phenomenon, i.e., the so-called reverse estuary. The Senegal River mouth is taken as a case study of cyclic variations in runoff, water salinity, and distance of saltwater penetration into the river. Certain environmental consequences of water salinization are discussed using the Casamance River estuary as an example. Methods used in Africa to prevent seawater intrusion and salinization of estuaries harmful for the environment and economy are described in this article.  相似文献   

8.
Taiwan is surrounded by the sea, and the southwestern seashores are suffering from a growing land subsidence problem caused by the excessive extraction of groundwater. There is also very serious intrusion by seawater along the coastline. These circumstances obstruct any land use, soil remediation or agriculture development in the area. When seawater intrudes, salt gets into the soil. The infiltration, evapotranspiration and the distribution of salinity in the unsaturated soil become a very complex problem. It is vital to investigate the hysteresis of soil water‐retention curves, combined with the salinity in these areas. Therefore, this study's main focus will be the calibration of variations in salinity and their effect on the hysteresis of soil water‐retention curves. In the wetting processes, the salty soil water‐retention curves undergo an upper shift compared with the original soil water‐retention curves because of the higher tension of saltwater. In the drying processes, there is also an upper shift compared with the original curves because the salinity influences the air‐entry pressure. The saltwater's high salinity causes the hysteresis of soil water‐retention curves to experience a greater shift. The changes in salinity also cause changes to the hysteresis curves’ shape factors, which conforms to Huang's model (developed by Huang H.C., Y.C. Tan, C.W. Liu, and C.H. Chen in 2005), the values of α and n. The value of α decreases with the increased salinity. The trend of the n value presents an irregular result. A linear regression of the αw and αd values was advanced where the R‐square values of αw and αd exceeded 0.97. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A laterally averaged two-dimensional numerical model is used to simulate hydrodynamics and cohesive sediment transport in the Tanshui River estuarine system. The model handles tributaries as well as the main stem of the estuarine system. Observed time series of salinity data and tidally averaged salinity distributions have been compared with model results to calibrate the turbulent diffusion coefficients. The overall model verification is achieved with comparisons of residual currents and salinity distribution. The model reproduces the prototype water surface elevation, currents and salinity distributions. Comparisons of the suspended cohesive sediment concentrations calculated by the numerical model and the field data at various stations show good agreement. The validated model is applied to investigate the tidally averaged salinity distributions, residual circulation and suspended sediment concentration under low flow conditions in the Tanshui River estuarine system. The model results show that the limit of salt intrusion in the mainstem estuary is located at Hsin-Hai bridge in Tahan Stream, 26 km from the River mouth under Q75 flow. The null point is located at the head of salt intrusion, using 1 ppt isohaline as an indicator. The tidally averaged sediment concentration distribution exhibits a local maximum around the null point.  相似文献   

10.
This paper is a discussion of Rhoads and Kenworthy (1998) ‘Time-averaged flow structure in the central region of a stream confluence’ Earth Surface Processes and Landforms, 23 , 171–191, that focuses upon the methods used to identify secondary circulation in river channel confluences. It argues that the Rozovskii method that Rhoads and Kenworthy use to rotate their field data to allow identification of secondary circulation cells is flawed, and can result in misleading conclusions about the nature of flow processes in confluences. It recommends that there is a re-emphasis upon helical as opposed to secondary circulation, and that recent developments in both field monitoring and numerical modelling may help significantly in this respect. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Marine intrusion is the most serious problem facing the coastal Jorf shallow aquifer, located in south‐eastern Tunisia on the Mediterranean Sea. Jorf Aquifer is intensively exploited to supply the growing needs of agriculture and domestic sectors. This work proposes a multidisciplinary investigation, involving hydro‐geochemical, geoelectrical survey and geostatistical techniques for modelling the saltwater intrusion. For this purpose, 36 water samples were conducted and analysed. Electric conductivity, pH, total dissolved solids and major ions were measured and analysed. Pie and Durov Diagrams, Q‐mode hierarchical cluster and geostatistical analysis were considered to identify the main groundwater mineralization processes. Results revealed that the Na‐Cl‐Ca‐SO4 is the dominant water type suggesting that dissolution of halite and gypsum was the main mineralization source of groundwater in the central and southern part of study area. However, saltwater intrusion was shown to control groundwater quality essentially in coastal areas. Variographic analyses were used to select the variographic model that best fits the spatial development of apparent resistivity. Kriged apparent resistivity profiles showed an abnormal decrease of resistivity values in the coastal zone, implying highly saline water because of seawater intrusion. Apparent resistivity values also decrease considerably in the faulted areas, suggesting a contribution of faults to seawater intrusion. Finally, saltwater mixing ratio was computed for each sample, and a refined seawater intrusion map was developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater discharges in the western Canadian oil sands region impact river water quality. Mapping groundwater discharges to rivers in the oil sands region is important to target water quality monitoring efforts and to ensure injected wastewater and steam remain sequestered rather than eventually resurfacing. Saline springs composed of Pleistocene‐aged glacial meltwater exist in the region, but their spatial distribution has not been mapped comprehensively. Here we show that formation waters discharge into 3 major rivers as they flow through the Athabasca Oil Sands Region adjacent to many active oil sands projects. These discharges increase river chloride concentrations from river headwaters to downstream reaches by factors of ~23 in the Christina River, ~4 in the Clearwater River, and ~5 in the Athabasca River. Our survey provides further evidence for the substantial impact of formation water discharges on river water quality, even though they comprise less than ~2% of total streamflow. Geochemical evidence supporting formation water discharges as the leading control on river salinity include increases in river chloride concentrations, Na/(Na + Ca) ratios, Cl/(Cl + SO4) ratios and decreases in 87Sr/86Sr ratios; each mixing trend is consistent with saline groundwater discharges sourced from Cretaceous or Devonian aquifers. These regional subsurface‐to‐surface connections signify that injected wastewater or steam may potentially resurface in the future, emphasizing the critical importance of mapping groundwater flow paths to understand present‐day streamflow quality and to predict the potential for injected fluids to resurface.  相似文献   

13.
Knowledge of locomotion of fish near river confluences is important for prediction of fish distribution in a river network.The flow separation zone near the confluence of a river network is a favorite habitat and feeding place for silver carp,which is one of the four major species of Chinese carp and usually provides positive rheotaxis to water flow.In the current study,a series of laboratory experiments were done to determine the behavioral responses of juvenile silver carp to the hydrodynamic ...  相似文献   

14.
ABSTRACT

Accurate assessment of stage–discharge relationships in open channel flows is important to the design and management of hydraulic structures and engineering. Flow junctions commonly occur at the confluence of natural rivers or streams. The effect of flow junctions on the stage–discharge relationship at mountain river confluences was found by measuring velocity fields and water levels in experimental models. The results show that the backwater and accumulation–separation at flow junctions affect the flow structures and patterns in the channel; also, flow confluences may induce complex flow characteristics of backwater and flow separation at river junctions, indicating potential submerged flooding disasters within the confluence zone. The impacts of flow junctions on the stage–discharge relationship are investigated for two physical confluence models built from river confluence prototype systems in southwest China. The results show that the presence of tributary river inflows tends to increase the water level of the main river. This is important for flood control, flood-risk evaluation and engineering (e.g. hydropower station construction) in mountain rivers. Finally, a comparative quantitative analysis based on flow motion equations is conducted to evaluate the stage–discharge relationship in both uniform and regular confluence systems. The results indicate that more accurate prediction can be made when taking into account the flow non-uniformity induced by flow separation, backwater and distorted bed in the junction region.  相似文献   

15.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon (222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×106 m3/day. The maximum spring flow was estimated at about 3.0×106 m3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m3 to about 6600 Bq/m3. Such a rapid response suggests a direct connection between the deep and the surficial aquifers.  相似文献   

18.
Salinity difference between terrestrial river discharge and oceanic tidal water plays a role in modifying the local flow field and, as a consequence, estuarine morphodynamics. Although widely recognized, recent numerical studies exploring the long-term morphological evolution of river-influenced estuaries with two-dimensional, depth-averaged models have mostly neglected salinity. Using a three-dimensional morphodynamic model, we aim to gain more insight into the effect of salinity on the morphodynamics of fluvio-deltaic systems. Model results indicate that the resultant estuarine morphology established after 600 years differs remarkably when a salinity gradient is included. A fan-shaped river-mouth delta exhibits less seaward expansion and is cut through by narrower channels when salinity is included. The inclusion of salinity tends to generate estuarine circulation, which favours landward sediment transport and hence limits the growth of the delta while enhancing the development of intertidal areas. The formation of deltaic channel–shoal patterns resulting from morphodynamic evolution tends to strengthen salinity stratification, which is characterized by an increased gradient Richardson number. The direction of the depth-averaged residual sediment transport over a tide may be opposite to the direction of residual velocity, indicating the significant influence of baroclinic effects on the net sediment transport direction (and hence morphological change). The effect of salinity on morphological evolution becomes less profound when the strength of tidal or fluvial forcing is dominant over the other. The effects of sediment type and flocculation, which are particularly important when salinity gradients are present, are also discussed. Overall, this study highlights that neglecting salinity to simulate long-term estuarine morphodynamics requires more careful justification, particularly when the environment is characterized by fine sediment types (favouring suspended transport), and relatively large river discharge and estuarine depth (favouring baroclinic effects). © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   

20.
The increase of salt intrusion in recent years in the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, has threatened the freshwater supply in the surrounding regions, especially the cities of Zhongshan, Zhuhai in Guangdong Province and Macau. A numerical modeling system using nested grids was developed to investigate the salt transport mechanisms and the response of salt intrusion to changes in river discharge and tidal mixing. The steady shear transport induced by estuarine circulation reaches maximum and minimum, respectively, during neap and spring tides, while the tidal oscillatory transport shows an opposite pattern. The net transport is landward during neap tides and seaward during spring tides. The salt intrusion length responding to constant river discharges generally follows a power law of ?0.49. The dependence of salt intrusion on tidal velocity is less than that predicted by theoretical models for exchange flow dominated estuaries. The response of salt intrusion to change in tidal velocity depends largely on river discharge. When river flow increases, the impact of tidal velocity increases and the phase lag of response time decreases. The asymmetries of salt intrusion responding to increasing and decreasing river discharge (tidal velocity) are observed in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号