首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic-associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre-fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.  相似文献   

2.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

3.
Elevated wildfire activity in many regions in recent decades has increased concerns about the short- and long-term effects on water quantity, quality, and aquatic ecosystem health. Often, loss of canopy interception and transpiration, along with changes in soil structural properties, leads to elevated total annual water yields, peak flows, and low flows. Post-fire land management treatments are often used to promote forest regeneration and mitigate effects to terrestrial and aquatic ecosystems. However, few studies have investigated the longer-term effects of either wildfire or post-fire land management on catchment hydrology. Our objectives were to quantify and compare the short- and longer-term effects of both wildfire and post-fire forest management treatments on annual discharge, peak flows, low flows, and evapotranspiration (AET). We analyzed ten years of pre-fire data, along with post-fire data from 1 to 7 and 35 to 41 years after wildfire burned three experimental catchments in the Entiat Experimental Forest (EEF) in the Pacific Northwest, USA. After the fire, two of the catchments were salvage logged, aerially seeded, and fertilized, while the third catchment remained as a burned reference. We observed increases in annual discharge (150–202%), peak flows (234–283%), and low flows (42–81%), along with decreases in AET (34–45%), across all three study catchments in the first seven year period after the EEF wildfire. Comparatively, annual discharge, peak flows, lows flows, and AET had returned to pre-fire levels 35–41 years after the EEF fire in the two salvage logged and seeded catchments. Surprisingly, in the catchment that was burned but not actively managed, the annual discharge and runoff ratios remained elevated, while AET remained lower, during the period 35–41 years after the EEF fire. We posit that differences in long-term hydrologic recovery across catchments were driven by delayed vegetation recovery in the unmanaged catchment. Our study demonstrates that post-fire land management decisions have the potential to produce meaningful differences in the long-term recovery of catchment-scale ecohydrologic processes and streamflow.  相似文献   

4.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Quantifying the linkages between vegetation disturbance by fire and the changes in hydrologic processes leading to post‐fire erosional response remains a challenge. We measured the influence of fire severity, defined as vegetation disturbance (using a satellite‐derived vegetation disturbance index, VDI), landscape features that organize hydrologic flow pathways (relief and elongation ratios), and pre‐fire vegetation type on the probability of the occurrence of post‐fire gully rejuvenation (GR). We combined field surveys across 270 burned low‐order catchments (112 occurrences of GR) and geospatial analysis to generate a probabilistic model through logistic regression. VDI alone discriminated well between catchments where GR did and did not occur (area under the curve = 0.78, model accuracy = 0.72). The strong effect of vegetation disturbance on GR suggests that vegetation exerts a primary influence on the occurrence of infiltration excess run‐off and post‐fire erosion and that major gully erosion will not occur until fire consumes aboveground biomass. Other topographic and local factors also influenced GR response, including catchment elongation, per cent pre‐fire shrub, mid‐slope riparian vegetation, armoured headwaters, firehose effects, and concentration of severe burn in source areas. These factors highlight the need to consider vegetation effects in concert with local topography and site conditions to understand the propensity for flow accumulation leading to GR. We present a process‐based conceptual hydrologic model where vegetation loss from fire decreases rainfall attenuation and surface roughness, leading to accelerated flow accumulation and erosion; these effects are also influenced by interactions between fire severity and landscape structure. The VDI metric provides a continuous measure of vegetation disturbance and, when placed in a hydrologic context, may improve quantitative analysis of burned‐area susceptibility to erosive rainfall, hazard prediction, ecological effects of fire, landform evolution, and sensitivity to climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The hydrologic impact of climate change has been largely assessed using mostly conceptual hydrologic models. This study investigates the use of distributed hydrologic model for the assessment of the climate change impact for the Spencer Creek watershed in Southern Ontario (Canada). A coupled MIKE SHE/MIKE 11 hydrologic model is developed to represent the complex hydrologic conditions in the Spencer Creek watershed, and later to simulate climate change impact using Canadian global climate model (CGCM 3·1) simulations. Owing to the coarse resolution of GCM data (daily GCM outputs), statistical downscaling techniques are used to generate higher resolution data (daily precipitation and temperature series). The modelling results show that the coupled model captured the snow storage well and also provided good simulation of evapotranspiration (ET) and groundwater recharge. The simulated streamflows are consistent with the observed flows at different sites within the catchment. Using a conservative climate change scenario, the downscaled GCM scenarios predicted an approximately 14–17% increase in the annual mean precipitation and 2–3 °C increase in annual mean maximum and minimum temperatures for the 2050s (i.e., 2046–2065). When the downscaled GCM scenarios were used in the coupled model, the model predicted a 1–5% annual decrease in snow storage for 2050s, approximately 1–10% increase in annual ET, and a 0·5–6% decrease in the annual groundwater recharge. These results are consistent with the downscaled temperature results. For future streamflows, the coupled model indicated an approximately 10–25% increase in annual streamflows for all sites, which is consistent with the predicted changes in precipitation. Overall, it is shown that distributed hydrologic modelling can provide useful information not only about future changes in streamflow but also changes in other key hydrologic processes such as snow storage, ET, and groundwater recharge, which can be particularly important depending on the climatic region of concern. The study results indicate that the coupled MIKE SHE/MIKE 11 hydrologic model could be a particularly useful tool for understanding the integrated effect of climate change in complex catchment scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In August 2003, the McLure forest fire burned 62% of the drainage basin of Fishtrap Creek. Streamflow has been measured there since the early 1970s, and suspended sediment concentration and channel morphology have been monitored since the fire. Although the short post‐fire period (four years) limits our ability to draw firm conclusions about streamflow changes, there has been no obvious increase in peak flows since the fire. However, the total runoff during the freshet period does appear to have increased and the onset of snowmelt appears to occur about two weeks earlier than it did prior to the fire. Suspended sediment records from Fishtrap Creek and from an unburnt reference stream nearby are similar, suggesting that the burnt areas have remained relatively stable and that the sediment supply to Fishtrap Creek has not been dramatically altered. In contrast, the stream channel morphology has changed, widening by over 100% of the original width in some places and transforming from a laterally stable plane‐bed morphology to a laterally active riffle‐pool morphology. The timing and magnitude of the observed morphologic changes are consistent with the predicted decline in bank strength due to root decay, implying that the observed changes are associated with an internal instability associated with changes to the stream boundaries, rather than with the more typically reported externally driven instabilities caused by changes in streamflow or sediment supply. This delayed response in the absence of large changes in streamflow or sediment supply, while ‘unusual’ in that it has not been documented in the previous literature, may be a common mode of response, particularly in wat'ersheds with nival flow regimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
An opportunity to study the effect of a bushfire on the hydrology of a forested catchment was presented when a bushfire burned through an area of approximately 280 square miles in the Snowy Mountains region of south-eastern New South Wales, Australia, in March 1965. The effect of the fire upon the hydrologic characteristics of two catchments for which streamflow records were available before and after the fire was examined and it was shown that:
1.
(i) there were pronounced changes in the shape of the flood hydrographs of one catchment,  相似文献   

9.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
J. A. Leach  R. D. Moore 《水文研究》2010,24(17):2369-2381
Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire‐disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on‐site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre‐wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre‐fire canopy cover. However, post‐disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one‐third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach‐scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth because of its proximity to the Greater Toronto area. This has led to extensive land use changes that have impacted its water resources and altered run‐off patterns in some rivers draining to the lake. Here, we use a paired‐catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most urban‐impacted catchment. Annual run‐off from Lovers Creek increased from 239 to 442 mm/year in contrast to the reference catchment (Black River at Washago) where run‐off was relatively stable with an annual mean of 474 mm/year. Increased annual run‐off from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992–1997; pre‐major development) and late (2004–2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to run‐off flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible run‐off simulations in Lovers Creek because of greater scatter between the parameters in canonical space. Separation of early and late‐period parameter sets for the reference catchment was based on climate and snowmelt‐related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment, whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The High Park Fire burned ~35 300 ha of the Colorado Front Range during June and July 2012. In the areas of most severe burn, all trees were killed and the litter and duff layers of soil were completely removed. Post‐fire erosion caused channel heads to develop well upslope from pre‐fire locations. The locations of 50 channel heads in two burned catchments were documented and the range of drainage areas contributing to these channel heads to drainage areas of unburned channel heads in the region measured previously were compared. Mean drainage area above channel heads in the burned zone decreased by more than two‐orders of magnitude relative to unburned sites. Drainage area above channel heads between the two burned catchments does not differ significantly with respect to slope, likely as a result of differences in surface roughness between the two sites following the fire. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The snow treatment becomes an important component of Soil and Water Assessment Tool (SWAT)’s hydrology when spring flows are dominated by snow melting. However, little is known about SWAT's snow hydrology performance because most studies using SWAT were conducted in rainfall‐driven catchments. To fill this gap, the present study aims to evaluate the ability of SWAT in simulating snow‐melting‐dominated streamflow in the Outardes Basin in Northern Quebec. SWAT performance in simulating snowmelt is evaluated against observed streamflow data and compared to simulations from the operationally used Streamflow Synthesis and Reservoir Regulation (SSARR) model over that catchment. The SWAT 5‐year calibration showed a satisfactory performance at the daily and seasonal time scales with low volume biases. The SWAT validation was conducted over two (17‐year and 15‐year) periods. Performances were similar to the calibration period in simulating the daily and seasonal streamflows again with low model biases. The spring‐snowmelt‐generated peak flow was accurately simulated by SWAT both in magnitude and timing. When SWAT's results are compared to SSARR, similar performances in simulating the daily discharges were observed. SSARR simulates more accurately streamflow generated at the snowmelt onset whereas SWAT better predicts streamflow in summer, fall and winter. SWAT provided reasonable streamflow simulations for our snow‐covered catchment, but refinement of the process‐driven baseflow during the snowmelt onset could improve spring performances. Therefore, SWAT becomes an attractive tool for evaluating water resources management in Nordic environments when a distributed model is preferred or when water quality information (e.g. temperature) is required. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

17.
The objective of this study was to analyse stream temperature variability during summer in relation to both surface heat exchanges and reach‐scale hydrology for two hydrogeomorphically distinct reaches. The study focused on a 1·5‐km wildfire‐disturbed reach of Fishtrap Creek located north of Kamloops, British Columbia. Streamflow measurements and longitudinal surveys of electrical conductivity and water chemistry indicated that the upper 750 m of the study reach was dominated by flow losses. A spring discharged into the stream at 750 m below the upper reach boundary. Below the spring, the stream was neutral to losing on three measurement days, but gained flow on a fourth day that followed a rain event. Continuous stream temperature measurements typically revealed a downstream warming along the upper 750 m of the study reach on summer days, followed by a pronounced cooling associated with the spring, with little downstream change below the spring. Modelled surface energy exchanges were similar over the upper and lower sub‐reaches, and thus cannot explain the differences in longitudinal temperature patterns. Application of a Lagrangian stream temperature model provided reasonably accurate predictions for the upper sub‐reach. For the lower sub‐reach, accurate prediction required specification of concurrent flow losses and gains as a hydrological boundary condition. These findings are consistent with differences in the hydrogeomorphology of the upper and lower sub‐reaches. The modelling exercise indicated that substantial errors in predicted stream temperature can occur by representing stream‐surface exchange as a reach‐averaged one‐directional flux computed from differences in streamflow between the upper and lower reach boundaries. Further research should focus on reliable methods for quantifying spatial variations in reach‐scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Stream water quality can change substantively during diurnal cycles, discrete flow events, and seasonal time scales. In this study, we assessed event responses in surface water nutrient concentrations and biogeochemical parameters through the deployment of continuous water quality sensors from March to October 2011 in the East Fork Jemez River, located in northern New Mexico, USA. Events included two pre‐fire non‐monsoonal precipitation events in April, four post‐fire precipitation events in August and September (associated with monsoonal thunderstorms), and two post‐fire non‐monsoonal precipitation events in October. The six post‐fire events occurred after the Las Conchas wildfire burned a significant portion of the contributing watershed (36%) beginning in June 2011. Surface water nitrate (NO3? N) concentrations increased by an average of 50% after pre‐fire and post‐fire non‐monsoonal precipitation events and were associated with small increases in turbidity (up to 15 NTU). Beginning 1 month after the start of the large regional wildfire, monsoonal precipitation events resulted in large multi‐day increases in dissolved NO3? N (6 × background levels), dissolved phosphate (100 × background levels), specific conductance (5 × background levels), and turbidity (>100 × background levels). These periods also corresponded with substantial sags in dissolved oxygen (<4 mg l?1) and pH (<6.5). The short duration and rapid rates of change during many of these flow events, particularly following wildfire, highlight the importance of continuous water quality monitoring to quantify the timing and magnitude of event responses in streams and to examine large water quality excursions linked to catchment disturbance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号