首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a conceptual modelling approach on two western Canadian mountainous catchments that were burned in separate wildfires in 2003 to explore the potential of using modelling approaches to generalize post‐wildfire catchment hydrology in cases where pre‐wildfire hydrologic data were present or absent. The Fishtrap Creek case study (McLure fire, British Columbia) had a single gauged catchment with both pre‐fire and post‐fire data, whereas the Lost Creek case study (Lost Ck. fire, Alberta) had several instrumented burned and reference catchments providing streamflows and climate data only for the post‐wildfire period. Wildfire impacts on catchment hydrology were assessed by comparing pre‐wildfire and post‐wildfire model calibrated parameter sets for Fishtrap Creek (Fishtrap Ck.) and the calibrated parameters of two burned (South York Ck. and Lynx Ck.) and two unburned (Star Ck. and North York Ck.) catchments for Lost Ck. Model predicted streamflows for burned catchments were compared with unburned catchments (pre‐fire in the case of Fishtrap Ck. and unburned in the case of the Lost Ck.). Similarly, model predicted streamflows from unburned catchments were compared with burned catchments (post‐fire in the case of Fishtrap Ck. and burned in the case of the Lost Ck.). For Fishtrap Ck., different model parameters and streamflow behaviour were observed for pre‐wildfire and post‐wildfire conditions. However, the burned and unburned model results from the Lost Ck. wildfire did not show differing streamflow responses to the wildfire. We found that this hydrological modelling approach is suitable where pre‐wildfire and post‐wildfire data are available but may provide limited additional insights where pre‐disturbance hydrologic data are unavailable. This may in part be because the conceptual modelling approach does not represent the physical catchment processes, whereas a physically based model may still provide insights into catchment hydrological response in these situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Wildfires are common in Australia and can cause vegetation loss and affect hydrological processes such as interception, evapotranspiration, soil water storage and streamflow. This study investigates wildfire impacts on catchment mean annual streamflow for 14 Australian catchments that have been severely impacted by the 2009 Victoria wildfire, the second-worst wildfire disaster in Australia. A statistical approach based on sensitivity coefficients was used for quantifying the climate variability impacts on streamflow and the time trend analysis method was used to estimate the annual streamflow changes due to wildfire respectively. Our results show that wildfire has caused a noticeable increase in mean annual streamflow in the catchments with a burnt area above 70% for an immediate post-wildfire period (2009–2015) and the wildfire impact on streamflow is evidently larger than the climate change impact in the majority of burnt catchments. Furthermore, the wildfire impact on mean annual streamflow strongly increases with the burnt percentage area, indicated by R2 = 0.73 between the two. The results also illustrate that catchments with high burnt percentage areas can have more potential to gain increased streamflow due to wildfires compared with that due to climate variability and can have significant streamflow change after wildfires above the 70% threshold of burnt area. These results provide evidence for evaluating large-scale wildfire impact on streamflow at small to medium-sized catchments, and guidance for process-based hydrological models for simulating wildfire impacts on hydrological processes for the immediate period after the wildfire.  相似文献   

3.
S. Riad  J. Mania  L. Bouchaou  Y. Najjar 《水文研究》2004,18(13):2387-2393
A model of rainfall–runoff relationships is an essential tool in the process of evaluation of water resources projects. In this paper, we applied an artificial neural network (ANN) based model for flow prediction using the data for a catchment in a semi‐arid region in Morocco. Use of this method for non‐linear modelling has been demonstrated in several scientific fields such as biology, geology, chemistry and physics. The performance of the developed neural network‐based model was compared against multiple linear regression‐based model using the same observed data. It was found that the neural network model consistently gives superior predictions. Based on the results of this study, artificial neural network modelling appears to be a promising technique for the prediction of flow for catchments in semi‐arid regions. Accordingly, the neural network method can be applied to various hydrological systems where other models may be inappropriate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Information on the spatial and temporal origin of runoff entering the channel during a storm event would be valuable in understanding the physical dynamics of catchment hydrology; this knowledge could be used to help design flood defences and diffuse pollution mitigation strategies. The majority of distributed hydrological models give information on the amount of flow leaving a catchment and the pattern of fluxes within the catchment. However, these models do not give any precise information on the origin of runoff within the catchment. The spatial and temporal distribution of runoff sources is particularly intricate in semi‐arid catchments, where there are complex interactions between runoff generation, transmission and re‐infiltration over short temporal scales. Agents are software components that are capable of moving through and responding to their local environment. In this application, the agents trace the path taken by water through the catchment. They have information on their local environment and on the basis of this information make decisions on where to move. Within a given model iteration, the agents are able to stay in the current cell, infiltrate into the soil or flow into a neighbouring cell. The information on the current state of the hydrological environment is provided by the environment generator. In this application, the Connectivity of Runoff Model (CRUM) has been used to generate the environment. CRUM is a physically based, distributed, dynamic hydrology model, which considers the hydrological processes relevant for a semi‐arid environment at the temporal scale of a single storm event. During the storm event, agents are introduced into the model across the catchment; they trace the flows of water and store information on the flow pathways. Therefore, this modelling approach is capable of giving a novel picture of the temporal and spatial dynamics of flow generation and transmission during a storm event. This is possible by extracting the pathways taken by the agents at different time slices during the storm. The agent based modelling approach has been applied to two small catchments in South East Spain. The modelling approach showed that the two catchments responded differently to the same rainfall event due to the differences in the runoff generation and overland flow connectivity between the two catchments. The model also showed that the time of travel to the nearest flow concentration is extremely important for determining the connectivity of a point in the landscape with the catchment outflow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Runoff and peak flows in three experimental catchments with different forest conditions were analysed in a rainy temperate climate in southern Chile. The hydrological effects of clearcutting a Pinus radiata plantation covering 79·4% of the La Reina catchment were studied by analysing runoff and peak flows in the pre‐ and post‐harvesting periods. Mean annual runoff increased 110% after timber harvesting. Clearcutting generated a 32% mean increase in peak flows. Peak flow and runoff were examined in two adjacent catchments with different forest conditions. The older plantation in Los Ulmos 1 increasingly consumed more water than the younger plantation established at Los Ulmos 2, whereas differences in peak flows between these two catchments were not significant. Runoff and peak flows comparisons not only reflected changes in forest cover, but also the effect of rainfall characteristics during the study periods and the basins' morphologies. Comparisons between pre‐ and post‐harvesting peak discharges must be undertaken with caution, because a previous analysis at La Reina using a partial set of data overestimated changes in peak flows after timber harvesting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In July 2013, a wildfire severely affected the western part of the island of Mallorca (Spain). During the first three post‐fire hydrological years, when the window of disturbance tends to be more open, the hydrological and sediment delivery processes and dynamics were assessed in a representative catchment intensively shaped by terracing that covered 37% of its surface area. A nested approach was applied with two gauging stations (covering 1.2 km2 and 4.8 km2) built in September 2013 that took continuous measurements of rainfall, water and sediment yield. Average suspended sediment concentration (1503 mg L?1) and the maximum peak (33 618 mg L?1) were two orders of magnitude higher than those obtained in non‐burned terraced catchments of Mallorca. This factor may be related to changes in soils and the massive incorporation of ash into the suspended sediment flux during the most extreme post‐fire event; 50 mm of rainfall in 15 min, reaching an erosivity of 2886 MJ mm ha?1 h?1. Moreover, hysteretic counter‐clockwise loops were predominant (60%), probably related to the increased sensitivity of the landscape after wildfire perturbation. Though the study period was average in terms of total annual precipitation (even higher in intensities), minimal runoff (2%) and low sediment yield (6.3 t km?2 y?1) illustrated how the intrinsic characteristics of the catchment, i.e. calcareous soils, terraces and the application of post‐fire measures, limited the hydrosedimentary response despite the wildfire impact. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

11.
Soil pipes are common and important features of many catchments, particularly in semi‐arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also signi?cantly in?uence catchment sediment and solute yield. However, there are often problems in ?nding and de?ning soil pipe networks which are located deep below the surface. Ground‐penetrating radar (GPR) has been used for non‐destructive identi?cation and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed signi?cant changes in re?ectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post‐processing, when background levels were increased by more than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post‐processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of ?owpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In a context of water scarcity in Peruvian Pacific catchments as a crucial issue for Peru, added to the paucity of data availability, we propose a methodology that provides new perspectives for freshwater availability estimation as a base reference for unimpaired conditions. Under those considerations, a regional discharge of 709 m3/s to the Pacific Ocean is estimated with a significant increasing trend of about 43 m3/s per decade over the 1970 – 2010 period. To represent the multidecadal behaviour of freshwater runoff along the region, a regional runoff analysis is proposed based on hydrological modelling at annual and monthly time step for unimpaired conditions over the whole 1970 – 2010 period. Differential Split‐Sample Tests are used to assess the hydrological modelling robustness of the GR1A and GR2M conceptual lumped models, showing a satisfactory transposability from dry to wet years inside the thresholds defined for Nash–Sutcliffe and bias criteria. This allowed relating physical catchment characteristics with calibrated and validated model parameters, thus offering a regional perspective for dryland conditions in the study area (e.g., the anticlockwise hysteresis relationship found for seasonal precipitation–runoff relationship) as well as the impacts of climate variability and catchment characteristics.  相似文献   

14.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Water storage depletion is an increasing hydrological threat to agricultural production and social stability across the globe. It is fast approaching threshold levels especially in arid/semiarid regions with low precipitation and excessive evapotranspiration (ET). This study analyses water storage dynamics in the North China Region (NCR) – an important grain‐production base in China. It uses monthly Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS) and field‐measured precipitation data products for 2002–2009. The datasets are analysed in a basin‐scale water balance equation to determine the state of storage in the NCR study area. Based on the validated satellite‐based data products with field‐measured values, average error/bias in the datasets is <10%. The analysis also shows favourable agreements among the GRACE‐derived and flux‐based storage changes at various temporal scales. Whereas the amplitudes and phases of the precipitation and ET fluxes are largely stable for 2002–2009, those of GLDAS runoff and GRACE total water storage anomaly apparently narrow out. The linear trends in the monthly, seasonal and annual storage changes are negative for the study period, suggesting storage loss. There is an apparent seasonality of storage change in the study area; with summer storage gain, winter storage loss and an overall storage loss that is on the average of 16.8 mm/yr. Storage loss is most severe in the central floodplain region (the main irrigated production zone) of the study area. Storage depletion in this important agro‐based semi‐arid region could have negative implications for the millions of people in the region and beyond in terms of water supply, crop production, food security and social stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号