首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the possible correspondence between catchment structure, as represented by perceptual hydrological models developed from fieldwork investigations, and mathematical model structures, selected on the basis of reproducing observed catchment hydrographs. Three Luxembourgish headwater catchments are considered, where previous fieldwork suggested distinct flow‐generating mechanisms and hydrological dynamics. A set of lumped conceptual model structures are hypothesized and implemented using the SUPERFLEX framework. Following parameter calibration, the model performance is examined in terms of predictive accuracy, quantification of uncertainty, and the ability to reproduce the flow–duration curve signature. Our key research question is whether differences in the performance of the conceptual model structures can be interpreted based on the dominant catchment processes suggested from fieldwork investigations. For example, we propose that the permeable bedrock and the presence of multiple aquifers in the Huewelerbach catchment may explain the superior performance of model structures with storage elements connected in parallel. Conversely, model structures with serial connections perform better in the Weierbach and Wollefsbach catchments, which are characterized by impermeable bedrock and dominated by lateral flow. The presence of threshold dynamics in the Weierbach and Wollefsbach catchments may favour nonlinear models, while the smoother dynamics of the larger Huewelerbach catchment were suitably reproduced by linear models. It is also shown how hydrologically distinct processes can be effectively described by the same mathematical model components. Major research questions are reviewed, including the correspondence between hydrological processes at different levels of scale and how best to synthesize the experimentalist's and modeller's perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Most conceptual hydrological models do not treat vegetation as a dynamic component. This study focuses on understanding the impact of model structural complexity on the sensitivity of hydrologic models to potential evapotranspiration forcing data. To achieve this, two classes of hydrologic models are examined: (1) lumped, conceptual rainfall–runoff models and (2) eco-hydrologic models. A sample of 57 US catchments, covering eight eco-regions, included in the MOPEX dataset is used. While streamflow simulation performance in complex models did not exhibit increased sensitivity to PET, actual evapotranspiration simulation performance showed greater sensitivity in energy-limited catchments. This analysis warns against using over-simplistic PET estimations in energy-limited catchments for eco-hydrologic models and for more complex conceptual hydrologic models. This is particularly true for streamflow-only calibrations that commonly fail to properly constrain physically based parameters. Ultimately, these results have the potential to inform data collection and model selection efforts to yield the greatest benefit.  相似文献   

6.
We used a conceptual modelling approach on two western Canadian mountainous catchments that were burned in separate wildfires in 2003 to explore the potential of using modelling approaches to generalize post‐wildfire catchment hydrology in cases where pre‐wildfire hydrologic data were present or absent. The Fishtrap Creek case study (McLure fire, British Columbia) had a single gauged catchment with both pre‐fire and post‐fire data, whereas the Lost Creek case study (Lost Ck. fire, Alberta) had several instrumented burned and reference catchments providing streamflows and climate data only for the post‐wildfire period. Wildfire impacts on catchment hydrology were assessed by comparing pre‐wildfire and post‐wildfire model calibrated parameter sets for Fishtrap Creek (Fishtrap Ck.) and the calibrated parameters of two burned (South York Ck. and Lynx Ck.) and two unburned (Star Ck. and North York Ck.) catchments for Lost Ck. Model predicted streamflows for burned catchments were compared with unburned catchments (pre‐fire in the case of Fishtrap Ck. and unburned in the case of the Lost Ck.). Similarly, model predicted streamflows from unburned catchments were compared with burned catchments (post‐fire in the case of Fishtrap Ck. and burned in the case of the Lost Ck.). For Fishtrap Ck., different model parameters and streamflow behaviour were observed for pre‐wildfire and post‐wildfire conditions. However, the burned and unburned model results from the Lost Ck. wildfire did not show differing streamflow responses to the wildfire. We found that this hydrological modelling approach is suitable where pre‐wildfire and post‐wildfire data are available but may provide limited additional insights where pre‐disturbance hydrologic data are unavailable. This may in part be because the conceptual modelling approach does not represent the physical catchment processes, whereas a physically based model may still provide insights into catchment hydrological response in these situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Performance of process‐based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi‐arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global‐satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote‐sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.  相似文献   

9.
Landscape differences induced by urbanization have prompted hydrologists to define a fuzzy boundary between rural- and urban-specific hydrological models. We addressed the validity of establishing this boundary, by testing two rural models on a large sample of 175 French and United States (US) urbanized catchments, and their 175 rural neighbours. The impact of urbanization on the hydrological behaviour was checked using four metrics. Using a split-sample test, we have compared the performances, parameter distributions, and internal fluxes of GR4H and IHACRES, two conceptual and continuous models running at the hourly time step. Both model structures are based on soil moisture accounting reservoirs (infiltration, runoff, and actual evapotranspiration) and quick flow/slow flow routing components, with no consideration of any specific feature related to urbanization. Results showed: (a) Except for the ratio of streamflow flashiness to precipitation flashiness, the range of hydrological signature metrics in rural catchments encompassed the specificities of urbanized ones. Overall, the urbanized catchments showed higher ratios of mean streamflow to mean precipitation (median values: 0.39 vs. 0.27) and streamflow flashiness to precipitation flashiness (0.13 vs. 0.03), besides lower baseflow index (0.42 vs. 0.62) and shorter characteristic response time (3 vs. 14 hr). (b) The performances of GR4H revealed no significant distinction between rural and urbanized catchments in terms of Kling–Gupta Efficiency (KGE), whereas IHACRES better simulated urbanized catchments, especially during summer. (c) With respect to differences in urbanization level, the GR4H and IHACRES parameters showed different distributions. The differences in parameters were consistent with the differences in hydrological behaviour, which is promising for a model-based assessment of the impact of urbanization. (d) The models agreed less in reproducing the internal fluxes over the urbanized catchments than over the rural ones. These results demonstrate the flexibility of conceptual models to handle the specificities of urbanized catchments.  相似文献   

10.
Streamflow is the runoff response integrated in space and time over a complex system involving climatic and catchment physiographic factors. In the Andes, accelerating runoff process understanding is hampered by the inability to quantify heterogeneity of surface and subsurface catchment properties. Here, we present a statistical approach based on regression models and correlation analysis that links hydrological signatures and catchment properties to unveil processes in a set of volcanic mountain catchments (latitude 0°30'N) in Ecuador. The catchments represent form and function diversity in the same hydrological unit. We found that despite of similar atmospheric-water inputs the water yield in the north-east region is about 5× larger than in the south-west region and their flow regimes are asymmetric. The soil-bedrock interface and lithology exert a first-order control on hydrologic partitioning, and this allowed us to hypothesize two hydrological mechanisms. Firstly, in the north-east region, the perennial streamflow is associated with seasonal rainfall patterns, and subsequent drainage processes taking place at the surface and subsurface level. The amount of streamflow is related to landform characteristics, high canopy density and root development of forest as well as water holding capacity of organic soils. From a mechanistic standpoint, the low concentration time, steep slopes and shallow infiltration limited by high-consolidated deposits of sedimentary and volcanics suggest a lateral movement of the flow. Secondly, in the south-west region the streamflow regime is mostly groundwater-dependent and it becomes seasonally enhanced by rainfall. Larger seasonal variations of precipitation and temperature result into enhanced evapotranspiration in the drier months, limiting shallow soil infiltration. Under the soil layers, highly permeable pyroclastic deposits and andesitic lavas promote deep percolation. The results highlight the degree of dissimilarity of hydrological processes in Andean settings, but unravelling their complexity seems plausible using streamflow signatures and causal explanatory models.  相似文献   

11.
Wildfires are common in Australia and can cause vegetation loss and affect hydrological processes such as interception, evapotranspiration, soil water storage and streamflow. This study investigates wildfire impacts on catchment mean annual streamflow for 14 Australian catchments that have been severely impacted by the 2009 Victoria wildfire, the second-worst wildfire disaster in Australia. A statistical approach based on sensitivity coefficients was used for quantifying the climate variability impacts on streamflow and the time trend analysis method was used to estimate the annual streamflow changes due to wildfire respectively. Our results show that wildfire has caused a noticeable increase in mean annual streamflow in the catchments with a burnt area above 70% for an immediate post-wildfire period (2009–2015) and the wildfire impact on streamflow is evidently larger than the climate change impact in the majority of burnt catchments. Furthermore, the wildfire impact on mean annual streamflow strongly increases with the burnt percentage area, indicated by R2 = 0.73 between the two. The results also illustrate that catchments with high burnt percentage areas can have more potential to gain increased streamflow due to wildfires compared with that due to climate variability and can have significant streamflow change after wildfires above the 70% threshold of burnt area. These results provide evidence for evaluating large-scale wildfire impact on streamflow at small to medium-sized catchments, and guidance for process-based hydrological models for simulating wildfire impacts on hydrological processes for the immediate period after the wildfire.  相似文献   

12.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The Weierbach experimental catchment (0.45 km2) is the most instrumented and studied sub-catchment in the Alzette River basin in Luxembourg. Within the last decade, it has matured towards an interdisciplinary critical zone observatory focusing on a better understanding of hydrological and hydro-geochemical processes. The Weierbach catchment is embedded in an elevated sub-horizontal plateau, characterized by slate bedrock and representative of the Ardennes Massif. Its climate is semi-marine, with precipitation being rather evenly distributed throughout the year. Base flow is lowest from July to September, essentially due to higher losses through evapotranspiration in summer. The regolith is composed of Devonian slates, overlaid by Pleistocene slope deposits and entirely covered by forest with 70% deciduous and 30% coniferous trees. Since 2009, the Weierbach has been extensively equipped for continuously monitoring water fluxes and physico-chemical parameters within different compartments of the critical zone. Additionally, these compartments are sampled fortnightly at several locations to analyze δ18O and δ2H isotopic composition of water including rainfall, throughfall, soil water, groundwater and streamwater. This ongoing monitoring and sampling programme is used for answering pressing questions related to fundamental catchment functions of water infiltration, storage, mixing and release in forest ecosystems. A recently started research line aims at investigating interactions between forest eco-hydrosystems with the atmosphere and understanding how catchments will respond to a non-stationary climate.  相似文献   

14.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Streamflow variability in space and time critically affects anthropic water uses and ecosystem services. Unfortunately, spatiotemporal patterns of flow regimes are often unknown, as discharge measurements are usually recorded at a limited number of hydrometric stations unevenly distributed along river networks. Advances in understanding the physical processes that control the spatial patterns of river flows are therefore necessary to predict water availability at ungauged locations or to extrapolate pointwise streamflow observations. This work explores the use of the spatial correlation of river flows as a metric to quantify the similarity between hydrological responses of two catchments. Following a stochastic framework, 340,000 cross‐correlations between pairs of daily streamflows time series are predicted at a seasonal timescale across the contiguous United States using 413 catchments of the MOPEX dataset. Model predictions of streamflow correlation obtained in absence of run‐off information are successfully used to identify catchment outlets sharing similar discharge dynamics and flow regimes across a broad range of geomorphoclimatic conditions, without relying on calibration. The selection of reference streamgauges based on predicted streamflow correlation generally outperforms the selection based on spatial proximity, especially as the density of available gauged sections decreases. Interestingly, correlated outlets share a broad spectrum of hydrological signatures (mean discharge, flow variability, and recession properties), suggesting that catchments forced by analogous frequency and intensity of effective rainfall events might exhibit common geomorphoecological traits leading to similar hydrological responses. The proposed framework provides a physical basis to assist the regionalization of flow dynamics and to interpret the spatial variability of flow regimes along stream networks.  相似文献   

17.
Understanding how explicit consideration of topographic information influences hydrological model performance and upscaling in glacier dominated catchments remains underexplored. In this study, the Urumqi glacier no. 1 catchment in northwest China, with 52% of the area covered by glaciers, was selected as study site. A conceptual glacier‐hydrological model was developed and tested to systematically, simultaneously, and robustly reproduce the hydrograph, separate the discharge into contributions from glacier and nonglacier parts of the catchment, and establish estimates of the annual glacier mass balance, the annual equilibrium line altitude, and the daily catchment snow water equivalent. This was done by extending and adapting a recently proposed landscape‐based semidistributed conceptual hydrological model (FLEX‐Topo) to represent glacier and snowmelt processes. The adapted model, FLEXG, allows to explicitly account for the influence of topography, that is, elevation and aspect, on the distribution of temperature and precipitation and thus on melt dynamics. It is shown that the model can not only reproduce long‐term runoff observations but also variations in glacier and snow cover. Furthermore, FLEXG was successfully transferred and up‐scaled to a larger catchment exclusively by adjusting the areal proportions of elevation and aspect without the need for further calibration. This underlines the value of topographic information to meaningfully represent the dominant hydrological processes in the region and is further exacerbated by comparing the model to a model formulation that does not account for differences in aspect (FLEXG,nA) and which, in spite of satisfactorily reproducing the observed hydrograph, does not capture the influence of spatial variability of snow and ice, which as a consequence reduces model transferability. This highlights the importance of accounting for topography and landscape heterogeneity in conceptual hydrological models in mountainous and snow‐, and glacier‐dominated regions.  相似文献   

18.
19.
Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport.  相似文献   

20.
Long‐term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information—to locally observed discharge—can be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large‐scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate‐based process constraints at long‐term, inter‐annual, and intra‐annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate‐based constraints with a constraint based on global maps of low‐flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate‐based constraints rejected inconsistent model simulations that were not rejected by the low‐flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for an—assumed to be—ungauged basin. This shows that our method is promising for modelling long‐term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号