首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
大气科学   2篇
地球物理   23篇
地质学   17篇
海洋学   6篇
天文学   14篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有64条查询结果,搜索用时 250 毫秒
1.
We present a new approach to enhancing weak prestack reflection signals without sacrificing higher frequencies. As a first step, we employ known multidimensional local stacking to obtain an approximate ‘model of the signal’. Guided by phase spectra from this model, we can detect very weak signals and make them visible and coherent by ‘repairing’ corrupted phase of original data. Both presented approaches – phase substitution and phase sign corrections – show good performance on complex synthetic and field data suffering from severe near-surface scattering where conventional processing methods are rendered ineffective. The methods are mathematically formulated as a special case of time-frequency masking (common in speech processing) combined with the signal model from local stacking. This powerful combination opens the avenue for a completely new family of approaches for multi-channel seismic processing that can address seismic processing of land data with nodes and single sensors in the desert environment.  相似文献   
2.
This study investigates the possible correspondence between catchment structure, as represented by perceptual hydrological models developed from fieldwork investigations, and mathematical model structures, selected on the basis of reproducing observed catchment hydrographs. Three Luxembourgish headwater catchments are considered, where previous fieldwork suggested distinct flow‐generating mechanisms and hydrological dynamics. A set of lumped conceptual model structures are hypothesized and implemented using the SUPERFLEX framework. Following parameter calibration, the model performance is examined in terms of predictive accuracy, quantification of uncertainty, and the ability to reproduce the flow–duration curve signature. Our key research question is whether differences in the performance of the conceptual model structures can be interpreted based on the dominant catchment processes suggested from fieldwork investigations. For example, we propose that the permeable bedrock and the presence of multiple aquifers in the Huewelerbach catchment may explain the superior performance of model structures with storage elements connected in parallel. Conversely, model structures with serial connections perform better in the Weierbach and Wollefsbach catchments, which are characterized by impermeable bedrock and dominated by lateral flow. The presence of threshold dynamics in the Weierbach and Wollefsbach catchments may favour nonlinear models, while the smoother dynamics of the larger Huewelerbach catchment were suitably reproduced by linear models. It is also shown how hydrologically distinct processes can be effectively described by the same mathematical model components. Major research questions are reviewed, including the correspondence between hydrological processes at different levels of scale and how best to synthesize the experimentalist's and modeller's perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
This paper explores the relationship between temperature, evaporation and soil moisture using a planetary boundary layer (PBL) model. It focuses on illustrating and quantifying the effect of soil moisture on the evolution of daytime temperatures. A simple convective PBL model coupled with the Penman–Monteith (PM) equation is used to estimate evapotranspiration. Following calibration and sensitivity analysis, the model was used to simulate the relative impact of dry and wet soil moisture conditions on daytime temperatures by changing the surface resistance parameter in the PM equation. It was found that the maximum temperature that can be reached during a day is constrained by the amount of soil moisture and the available net radiation, confirming previously published results. Higher temperatures can be reached with greater net radiation and dry soil moisture conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Over the past few years, our group has been developing hydrodynamic models to simulate formation of the Eagle Nebula pillars. The true test of any model is, of course, how well it can reproduce the observations. Here, we discuss how we go about testing our models against observations. We describe the process by which we “observe” the model data to create synthetic maps. We show an example of this technique using one of our model runs and compare the resultant synthetic map to the real one.  相似文献   
6.
7.
The origin of the Baikal rift zone (BRZ) has been debated between the advocates of passive and active rifting since the 1970s. A re-assessment of the relevant geological and geophysical data from Russian and international literature questions the concept of broad asthenospheric upwelling beneath the rift zone that has been the cornerstone of many “active rifting” models. Results of a large number of early and recent studies favour the role of far-field forces in the opening and development of the BRZ. This study emphasises the data obtained through studies of peridotite and pyroxenite xenoliths brought to the surface by alkali basaltic magmas in southern Siberia and central Mongolia. These xenoliths are direct samples of the upper mantle in the vicinity of the BRZ. Of particular importance are suites of garnet-bearing xenoliths that have been used to construct PT- composition lithospheric cross-sections in the region for the depth range of 35–80 km.Xenolith studies have shown fundamental differences in the composition and thermal regime between the lithospheric mantle beneath the ancient Siberian platform (sampled by kimberlites) and beneath younger mobile belts south of the platform. The uppermost mantle in southern Siberia and central Mongolia is much hotter at similar levels than the mantle in the Siberian craton and also has significantly higher contents of ‘basaltic’ major elements (Ca, Al, Na) and iron, higher Fe/Si and Fe/Mg. The combination of the moderately high geothermal gradient and the fertile compositions in the off-cratonic mantle appears to be a determining factor controlling differences in sub-Moho seismic velocities relative to the Siberian craton. Chemical and isotopic compositions of the off-cratonic xenoliths indicate small-scale and regional mantle heterogeneities attributed to various partial melting and enrichment events, consistent with long-term evolution in the lithospheric mantle. Age estimates of mantle events based on Os–Sr–Nd isotopic data can be correlated with major regional stages of crustal formation and may indicate long-term crust–mantle coupling. The ratios of 143/144Nd in many LREE-depleted xenoliths are higher than those in MORB or OIB source regions and are not consistent with a recent origin from asthenospheric mantle.Mantle xenoliths nearest to the rift basins (30–50 km south of southern Lake Baikal) show no unequivocal evidence for strong heating, unusual stress and deformation, solid state flow, magmatic activity or partial melting that could be indicative of an asthenospheric intrusion right below the Moho. Comparisons between xenoliths from older and younger volcanic rocks east of Lake Baikal, together with observations on phase transformations and mineral zoning in individual xenoliths, have indicated recent heating in portions of the lithospheric mantle that may be related to localised magmatic activity or small-scale ascent of deep mantle material. Overall, the petrographic, PT, chemical and isotopic constraints from mantle xenoliths appear to be consistent with recent geophysical studies, which found no evidence for a large-scale asthenospheric upwarp beneath the rift, and lend support to passive rifting mechanism for the BRZ.  相似文献   
8.
Molecular analysis of cyanobacterial mat communities indicated that cyanobacteria, ammonia-oxidizing Archaea (AOA), and ammonia-oxidizing bacteria (AOB) coexist in those systems, competing for ammonium; this situation would imply competitive exclusion. We attempted to model how ammonia utilization niche partitioning occurs, and how ammonium levels can influence the interaction between those groups in a one-dimensional diffusionlimited system using Michaelis-Menten kinetics to describe ammonium consumption by each of those three groups. In our model, AOAs were able to dominate ammonium uptake by the community under most circumstances, except for unrealistically high (millimolar) levels of ammonium, where AOBs gained advantage. Cyanobacteria were unable to effectively compete for ammonium with either AOBs or AOAs throughout the mat at all ammonium concentrations and cell counts, suggesting that the presence of AOAs or AOBs forces cyanobacteria into nitrogen fixation mode. Such interaction can make cyanobacterial mats a net nitrogen source, as well as provide a carbon-independent energy transfer pathway from primary producers to the rest of the ecosystem.  相似文献   
9.
Optimization of mooring observations in Northern Bering Sea   总被引:1,自引:0,他引:1  
The problem of the optimal sampling strategy for moored current velocity observations in the Northern Bering Sea is addressed. We analyze dynamically induced correlations in the North Bering Sea currents and conduct their sensitivity analysis to optimize positions of a limited number of moorings. Optimization of the sampling strategy is performed with respect to robustness of the reconstruction of the North Bering Sea circulation with a particular emphasis on the accurate monitoring of the mean Bering Strait transport. Computations reveal four major regions in the North Bering Sea basin that are highly correlated with the Bering Strait transport. Apart from the regions within the Bering Strait itself, they include the Anadyr Strait and a region 100 km south of the Cape of Prince of Wales. Results of the sensitivity analysis are tested in the framework of twin data experiments with the quasi-stationary and oscillatory background circulations.  相似文献   
10.
Current visualization techniques for computational fluid dynamics applications are sophisticated and work well in simple geometries. For complex geometries such as pore spaces, multiple domain boundaries obstruct the view and make the studying of fluid flow fields difficult. To overcome these deficiencies, we use two-sided materials to render the domain boundaries. Using this technique, it is possible to place the camera inside the domain and have a non-obstructed view of the surrounding flow field without losing spatial reference to the domain boundaries. As a result, a larger part of fluid flow visualization is visible. Two-sided material rendering was successfully applied to display still images with Blender Cycles renderer, in a virtual reality environment, and several implementation techniques were explored for using the Visualization Toolkit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号