首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We develop a three-parameter H, G1, G2 magnitude phase function for asteroids starting from the current two-parameter H, G phase function. We describe stochastic optimization of the basis functions of the magnitude phase function based on a carefully chosen set of asteroid photometric observations covering the principal types of phase dependencies. We then illustrate the magnitude phase function with a chosen set of observations. It is shown that the H, G1, G2 phase function systematically improves fits to the existing data and considerably so, warranting the utilization of three parameters instead of two. With the help of the linear three-parameter phase function, we derive a nonlinear two-parameter H, G12 phase function, and demonstrate its applicability in predicting phase dependencies based on small numbers of observations.  相似文献   

2.
David A. Minton 《Icarus》2008,195(2):698-704
Rubble pile asteroids can attain shapes that are dramatically different from those of rotating, self-gravitating equilibrium fluids. A new numerical technique, called “seed growth,” is demonstrated for calculating three-dimensional bodies that are self-gravitating and rotating, and whose every surface is approximately at a constant angle, ?, with respect to the local horizontal. By altering the configuration of cusps, which are points along a constant longitude path where the surface angle changes sign but not magnitude, multiple solution shapes that satisfy the condition that all surface slopes are at a constant angle are possible. Five different cusp configurations are explored here, three of which yield solutions for 20°???30°. Rotational effects are explored, and it is found that for some solution shapes, the ratios of their shortest to longest dimensions, c/a, can fall outside the limits published in the literature for rotating, cohesionless, spheroidal bodies. Solution shapes show some similarities to observed small bodies, such as the saturnian satellite Atlas, the near-Earth Asteroid 1999 KW4, and some contact binary asteroids.  相似文献   

3.
E.A. Cloutis  T. Hiroi 《Icarus》2011,212(1):180-209
Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (<10% maximum reflectance) but otherwise exhibit a high degree of spectral variability. Overall spectral slopes range from red (increasing reflectance with increasing wavelength) to blue (decreasing reflectance with increasing wavelength). A number of the CI spectra exhibit weak (<5% deep) absorption bands that can be attributed to both phyllosilicates and magnetite. Very weak absorption bands attributable to other CI phases, such as carbonates, sulfates, and organic matter may be present in one or a few spectra, but their identification is not robust. We found that darker spectra are generally correlated with bluer spectral slopes: a behavior most consistent with an increasing abundance of fine-grained magnetite and/or insoluble organic material (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.  相似文献   

4.
We present new polarimetric and photometric observations of high-albedo E-type Asteroid 44 Nysa in the BVRI wavebands at phase angles ranging from 0.41° to 7.49° during the 2005 opposition. A bimodal phase-angle dependence of polarization was found for Nysa in the V band. The polarization opposition effect was revealed in the form of a secondary minimum of negative polarization with amplitude ∼0.3% centered at a phase angle ∼0.8°. It is superimposed on the regular negative polarization branch with minimal polarization −0.30% at a phase angle 5.8°. We analyzed all available polarimetric data for E-type Asteroids 44 Nysa, 64 Angelina, and 214 Ashera and confirmed the presence of the polarization opposition effect for high-albedo asteroids at phase angle ∼1° with an amplitude ∼0.35%. The magnitude-phase curves reveal the presence of spike-like opposition effect of brightness for 44 Nysa in the BVRI spectral bands. 44 Nysa is the second high-albedo asteroid after 64 Angelina for which both the polarization opposition effect and the brightness opposition effect are detected. The differences between the parameters of the opposition effects for silicate surfaces (44 Nysa, 64 Angelina, Io) and icy surfaces (Europa, Ganymede, Iapetus, Saturn's rings) are discussed. The specific morphological parameters of opposition effects, in particular the angular width of the polarization opposition effect is comparable to that of the brightness opposition effect, provide almost unequivocal evidence that they are caused by coherent backscattering. One of unexpected results of our investigation is that 44 Nysa becomes bluer with increasing phase angle, while 64 Angelina shows phase reddening.  相似文献   

5.
We present new imaging polarimetric observations of two Main Belt asteroids, (234) Barbara and (387) Aquitania, taken in the first half of 2008 using the Dual-Beam Imaging Polarimeter on the University of Hawaii 2.2 m telescope, located on Mauna Kea, Hawaii. Barbara had been previously shown to exhibit a very unusual polarization-phase curve by [Cellino, A., Belskaya, I.N., Bendjoya, Ph., di Martino, M., Gil Hutton, R., Muinonen, K., Tedesco, E.F., 2006. Icarus 180, 565-567]. Our observations confirm this result and add Aquitania to the growing class of large inversion angle objects. Interestingly, these asteroids show spinel features in their IR spectra suggesting a mineralogical origin to the phase angle-dependent polarimetric features. As spinel is associated with calcium-aluminum-rich inclusions and carbonaceous chondrites, these large inversion angle asteroids may represent some of the oldest surfaces in the Solar System. Circular as well as linear polarization measurements were obtained but circular polarization was not detected.  相似文献   

6.
The results of photometric observations of eight main-belt asteroids with low surface albedo are presented. The magnitude-phase dependences including low phase angles (<1 deg) have been obtained for Asteroids 76 Freia (down to phase angle 0.1 deg, P-type), 190 Ismene (0.3 deg, P-type), 303 Josephina (0.2 deg, C-type), 309 Fraternitas (0.1 deg, C-type), 313 Chaldaea (0.1 deg, C-type), 444 Gyptis (0.8 deg, P-type), 615 Roswitha (0.1 deg, C-type), and 954 Li (0.03 deg, FCX-type). The behavior of brightness in the range of opposition effect is found to be practically linear for 190 Ismene with amplitude of opposition effect only 0.03 mag. Amplitudes of the opposition effect for other asteroids are close to a mean for this type. The obtained data allowed us also to determine the rotation periods of asteroids: 303 Josephina (12.497±0.001 h), 309 Fraternitas (11.205±0.005 h), 615 Roswitha (4.422±0.001 h) and 954 Li (7.207±0.002 h). The color indexes B-V, V-R and R-I have been determined for some asteroids.  相似文献   

7.
We present the results of photometric observations of trans-neptunian object 20000 Varuna, which were obtained during 7 nights in November 2004-February 2005. The analysis of new and available photometric observations of Varuna reveals a pronounced opposition surge at phase angles less than 0.1 deg with amplitude of 0.2 mag relatively to the extrapolation of the linear part of magnitude-phase dependence to zero phase angle. The opposition surge of Varuna is markedly different from that of dark asteroids while quite typical for moderate albedo Solar System bodies. We find an indication of variations of the scattering properties over Varuna's surface that could result in an increase of the lightcurve amplitude toward zero phase angle. It is shown that a similar phase effect can be responsible for lightcurve changes found for TNO 19308 (1996 TO66) in 1997-1999.  相似文献   

8.
The compilation of a central database for asteroid lightcurve data, i.e., rotation rate and amplitude along with ancillary information such as diameter and albedo (known or estimated), taxonomic class, etc., has been important to statistical studies for several decades. Having such a compilation saves the researcher hours of effort combing through any number of journals, some obvious and some not, to check on prior research. Harris has been compiling such data in the Asteroid Lightcurve Database (LCDB) for more than 25 years with Warner and Pravec assisting the past several years. The main data included in the LCDB are lightcurve rotation periods and amplitudes, color indices, H-G parameters, diameters (actual or derived), basic binary asteroid parameters, and spin axis and shape models. As time permits we are reviewing existing entries to enter data not previously recorded (e.g., phase angle data). As of 2008 December, data for 3741 asteroids based on more than 10650 separate detail records derived from entries in various journals were included in the LCDB. Of those 3741 asteroids, approximately 3100 have data of sufficient quality for statistical analysis, including 7 that have “dual citizenship” - meaning that they have (or had) asteroid designations as well comet designations. Here we present a discussion of the nature of LCDB data, i.e., which values are actually measured and which are derived. For derived data, we give our justification for specific values. We also present some analysis based on the LCDB data, including new default albedo (pV) and phase slope parameter (G) values for the primary taxonomic classes and a review of the frequency-diameter distribution of all asteroids as well as some selected subsets. The most recent version of data used in this analysis is available for download from the Collaborative Asteroid Lightcurve Link (CALL) site at http://www.MinorPlanetObserver.com/astlc/default.htm. Other data sets, some only subsets of the full LCDB, are available in the Ephemeris of Minor Planets, The Planetary Data System, and the Minor Planet Center web site.  相似文献   

9.
New UBVRI polarimetric observations of ten asteroids, including space mission targets 1 Ceres and 21 Lutetia, are presented. These observations were obtained with the 1.25-m telescope of the Crimean Astrophysical Observatory and have been used to study the wavelength dependence of polarization for a sample of asteroids belonging to the M and low albedo classes. A more general analysis including also a larger data set of UBVRI polarimetric observations available in the literature for more than 50 main belt asteroids belonging to different taxonomic classes shows that the variation of the polarization degree Pr as a function of wavelength is generally well described by a linear trend. It typically does not exceed 0.2% in the studied spectral range 0.37-0.83 microns and tends to increase for increasing phase angle. Asteroids belonging to the S and M classes are found to exhibit a deeper negative branch and smaller positive polarization for increasing wavelength (negative sign of the slope of ΔPrλ). Since the objects belonging to these classes are known to exhibit reddish reflectance spectra, the observed wavelength behavior of negative polarization contradicts the well-known inverse correlation of Pmin and albedo. Low albedo asteroids show larger dispersion of spectral slopes, but the overall trend is characterized by a shallower negative branch and a larger positive polarization for increasing wavelength (positive sign of the slope of ΔPrλ). A few exceptions from this general trend are discussed. The observed variety in the wavelength dependence of asteroid polarization seems to be mainly attributed to surface composition.  相似文献   

10.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   

11.
We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276-1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.  相似文献   

12.
The results of V-band polarimetric observations of the potentially hazardous near-Earth Asteroid (23187) 2000 PN9 at large phase angles are presented as well as its photometric observations in BVRI bands. Observations were made in March-April 2006 during its close approach to the Earth using the 1.82-m Asiago telescope (Italy) and the 0.7-m telescope at the Chuguevskaya Observational Station (Ukraine). We obtained polarimetric measurements at the phase angle of 115°, the largest phase angle ever observed in asteroid polarimetry. Our data show that the maximum value of the polarization phase curve reached 7.7% and occurred in the phase angle range of 90-115°. The measured values of linear polarization degree, BVRI colors and magnitude-phase dependence correspond to the S-type composition of this asteroid. Based on our observations the following characteristics of the Asteroid (23187) 2000 PN9 were obtained: a rotation period of 2.5325±0.0004 h, a lightcurve amplitude of 0.13 mag, an albedo of 0.24±0.06 and a diameter of 1.6±0.3 km.  相似文献   

13.
We have made near-IR spectral observations of the very young (5.75 Myr) S-type asteroid 832 Karin, well sampled in rotational phase over its 18.35-h period. We find no significant variations in its reflectance spectrum. Karin, the brightest member of the Karin cluster (a sub-family of the larger, older Koronis dynamical family), was shown to be exceptionally young by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Dones, L., Levison, H., 2002. Nature 417, 720-722], using backward numerical integration of orbital elements of cluster members. Their precise dating of the collisional breakup gives us an opportunity, for the first time and without age-dating of physical samples, to monitor time-evolution of processes, like space weathering, that operate on timescales of ∼1-10 Myr. Sasaki et al. [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615, L161-L164; Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Ito., T., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., 2005. Lunar Planet. Sci. XXXVI. Abstract #1590] had made similar measurements of Karin, although more sparsely sampled than ours, and claimed dramatically different colors as a function of rotational phase. Sasaki et al. interpreted their data to be showing the reddish, space-weathered exterior surface of the precursor asteroid, as well as an interior face, which had not had time to become space-weathered. On five nights over 2006 January 7-14 UT, we observed Karin with the SpeX (0.8-2.5 μm) spectrometer of the IRTF. We analyze data in 30° intervals of rotational longitude, some of which we sampled on two different nights. The spectra are consistent with little or no spectral variation as the asteroid rotates; certainly there are no changes as large as previously reported. The previous observations were probably spurious. Our average spectrum resembles the “blue” spectrum of Sasaki et al., which they interpreted to be the “fresh” surface. Karin is not quite as red as typical S-types, yet has rather shallow absorption bands. We surmise that the space-weathering process affecting Karin has had time to reduce spectral contrast, but has not operated long enough to redden its spectrum—an intermediate case of space weathering, which has gone to completion for most main-belt asteroids. This work sets an important constraint on the timescale for the ubiquitous space-weathering process affecting S-types, namely that its effects are evident, but not yet complete, at ∼6 Myr.  相似文献   

14.
The near-Earth Asteroid 25143 Itokawa, the target of the Japanese space mission Hayabusa, was observed in June, 2004 with the Torino photopolarimeter attached at the 2.15 m telescope of the El Leoncito Observatory (Argentina). The degree of linear polarization in five colors was measured over a wide range of phase angles, between 40° and 80°. The data obtained are sufficient to derive an estimate of the asteroid's albedo of 0.24±0.01, which is in good agreement with the S-type taxonomic classification of this object. The phase-polarization curve has been sampled in UBVRI colors, covering a wide range of phase angles that cannot be reached by Earth-based observations of Main Belt asteroids.  相似文献   

15.
Patrick Michel  Martin Jutzi 《Icarus》2011,211(1):535-545
The Veritas family is located in the outer main belt and is named after its apparent largest constituent, Asteroid (490) Veritas. The family age has been estimated by two independent studies to be quite young, around 8 Myr. Therefore, current properties of the family may retain signatures of the catastrophic disruption event that formed the family. In this paper, we report on our investigation of the formation of the Veritas family via numerical simulations of catastrophic disruption of a 140-km-diameter parent body, which was considered to be made of either porous or non-porous material, and a projectile impacting at 3 or 5 km/s with an impact angle of 0° or 45°. Not one of these simulations was able to produce satisfactorily the estimated size distribution of real family members. Based on previous studies devoted to either the dynamics or the spectral properties of the Veritas family, which already treated (490) Veritas as a special object that may be disconnected from the family, we simulated the formation of a family consisting of all members except that asteroid. For that case, the parent body was smaller (112 km in diameter), and we found a remarkable match between the simulation outcome, using a porous parent body, and the real family. Both the size distribution and the velocity dispersion of the real reduced family are very well reproduced. On the other hand, the disruption of a non-porous parent body does not reproduce the observed properties very well. This is consistent with the spectral C-type of family members, which suggests that the parent body was porous and shows the importance of modeling the effect of this porosity in the fragmentation process, even if the largest members are produced by gravitational reaccumulation during the subsequent gravitational phase. As a result of our investigations, we conclude that it is very likely that the Asteroid (490) Veritas and probably several other small members do not belong to the family as originally defined, and that the definition of this family should be revised. Further investigations will be performed to better constrain the definitions and properties of other asteroid families of different types, using the appropriate model of fragmentation. The identification of very young families in turn will continue to serve as a tool to check the validity of numerical models.  相似文献   

16.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

17.
We present observations of the Centaur (32532) 2001 PT13 taken between September 2000 and December 2000. A multi-wavelength lightcurve was assembled from V-, R- and J-band photometry measurements. Analysis of the lightcurve indicates that there are two peaks of slightly different brightness, a rotation period of 0.34741±0.00005 day, and a maximum photometric range of 0.18 mag. We obtained VRJHK colors (V-R=0.50±0.01, V-J=1.69±0.02, V-H=2.19±0.04, and V-K=2.30±0.04) that are consistent with the grey KBO/Centaur population. The V-R color shows no variation as a function of rotational phase; however, we cannot exclude the possibility that rotational variations are present in the R-J color. Assuming a 4% albedo, we estimate that 2001 PT13 has an effective diameter of 90 km and a minimum axial ratio a/b of 1.18. We find no evidence of a coma and place an upper limit of 15 g s−1 on the dust production rate.  相似文献   

18.
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach.  相似文献   

19.
In this paper the Stardust disk-integrated phase curve at phase 47.2-134.6° of the Asteroid 5535 Annefrank, combined with groundbased observations (at phase 2.3-18.3°), are fit with Hapke’s photometric model. We confirm Newburn et al.’s (Newburn, R.L. et al. [2003]. J. Geophys. Res. 108 (E11), 5117. doi:10.1029/2003JE002106) observation that Annefrank exhibits a steep phase curve. This manifests itself in an unusually high fit surface roughness parameter of 49°. The single particle scattering albedo is 0.62, also high for an S-asteroid, while the fit phase function is more forward scattering than the typical S-asteroid being nearly isotropic with an asymmetry parameter of −0.09. The fit opposition surge width (h = 0.015) is typical of S-asteroids. However these fits assume a spherical shape to the asteroid. Li et al. (Li, J., A’Hearn, M.F., McFadden, L.A. [2004]. Icarus, 415-431) have shown that this assumption may lead to significant errors particularly at high phase angles leading to higher modeled single particle scattering albedos, macroscopic roughnesses and more forward scattering phase functions than actually exhibited. Our results confirm this finding—fitting only the data below 90° phase yields lower particle albedos (0.41) and roughnesses (20°) and more backscattering particles (−0.19) than the fit including the high phase angle data. Overall Annefrank appears to be on the bright side but otherwise is typical for an S-type asteroid suggesting that it may be a recent collisional fragment with a relatively immature surface which has had relatively little time to be weathered.  相似文献   

20.
Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. The mean radar albedo for all our targets is , significantly higher than the mean radar albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of these objects (Asteroids 16 Psyche, 129 Antigone, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, 785 Zwetana) have radar albedos indicative of a very high metal content , and consistent with a remnant iron/nickel core interpretation (irons) or exotic high metal meteorite types such as CB. We propose designating these high radar albedo objects as Mm. Two asteroids, 110 Lydia and 678 Fredegundis, have more moderate radar albedos , but exhibit high values at some rotation phases suggesting a significant metal content. The remaining 10 objects have moderate radar albedos at all rotation phases. Most of our targets have visible/near-infrared spectra (Hardersen, P.S., Gaffey, M.J., Abell, P.A. [2005]. Icarus 175, 141-158; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2009]. Icarus, submitted for publication) that indicate the presence of at least some silicate phases. All of the non-Mm asteroids show a positive correlation between visual and radar albedo but the reasons for this are not clear. All of the higher radar albedo targets (the 7 Mm asteroids, Lydia, and Fredegundis) show moderate to large variations in radar albedo with rotation phase. We suggest that their high radar reflectivity exaggerates irregularities in the asteroid shape to cause this behavior. One-third of our targets show evidence for asteroid-scale concavities or bifurcation. Based on all the evidence available, we suggest that most Tholen M-class asteroids are not remnant iron cores or enstatite chondrites, but rather collisional composites of silicates and irons with compositions more analogous to stony-iron meteorites and high-iron carbonaceous chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号