首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We have analysed a thirty-six day recording of the natural electric and magnetic field variations obtained on the deep ocean floor north-east of Hawaii. The electromagnetic fields are dominated by tides which have an appreciable oceanic component, especially in the east electric and north magnetic components. The techniques of data analysis included singular value decomposition (SVD) to remove uncorrelated noise. There are three degrees of freedom in the data set for periods longer than five hours, indicating a correlation of the vertical magnetic field and the horizontal components, suggesting source field inhomogeneity. Tensor response functions were calculated using spectral band averaging with both SVD and least squares techniques and rotated to the principal direction. One diagonal component, determined mainly by the north electric and east magnetic fields, is not interpretable as a one-dimensional induction phenomenon. The other diagonal term of the response function indicates a rapid rise in conductivity to 0.05 mho m−1 near 160 km. No decrease in conductivity below this depth is resolvable. Polarization analysis of the magnetic field indicates moving source fields with a wavelength near 5000 km. Model studies suggest that the two dimensionality in the response function may be caused by motion in the ionospheric current system.  相似文献   

2.
Summary. Many geomagnetic variation anomalies are probably caused by the channelling, through small-scale bodies, of electric currents induced in much larger conductors elsewhere. Consequently, the direct interpretation of anomalous magnetic fields by modelling the electromagnetic response of conductive structures may give misleading results. It is suggested that, rather than attempting to proceed directly from the electromagnetic fields to conductivity models, we should instead take the intermediate step of determining the distribution of anomalous current flow.
Maps of the anomalous fields over a conductive structure can be generated from inter-station transfer functions. If it is assumed that the internal currents are concentrated in a thin sheet at a specified depth, the equivalent current system in the sheet can be computed directly from the vertical magnetic field. The most straightforward method of performing this calculation is to compute the Fast Fourier Transform of the magnetic field data, and then to apply a wavenumber filter.
The presence of any vertical currents invalidates the thin sheet model. However, if the spatial distribution of a horizontal component of the anomalous magnetic field is also known, the presence of any vertical currents can be detected directly, and their position determined. The value of the methods is illustrated by applying them to the interpretation of a Geomagnetic Deep Sounding survey of the Kenya rift valley.  相似文献   

3.
Regional spherical coordinate observations of the Earth's crustal magnetic field components are becoming increasingly available from shipborne, airborne, and satellite surveys. In assessing the geological significance of these data, theoretical anomalous magnetic fields from geologic models in spherical coordinates need to be evaluated. This study explicitly develops the elegant Gauss–Legendre quadrature formulation for numerically modelling the complete magnetic effects (i.e. potential, vector and tensor gradient fields) of the spherical prism. We also use these results to demonstrate the magnetic effects for the crustal prism and to investigate the crustal magnetic effects at satellite altitudes for a large region of the Middle East centred on Iran.  相似文献   

4.
Surface integral formulae are derived expressing any one of certain field quantities, namely current functions, magnetic potentials and normal components of magnetic fields, in terms of any one other, for current systems flowing in concentric spherical surfaces. In all, 36 such formulae are obtained, which should prove useful in many geomagnetic studies, especially in geomagnetic induction problems.  相似文献   

5.
We present a semi-analytical, unifying approach for modelling the electromagnetic response of 3-D bodies excited by low-frequency electric and magnetic sources. We write the electric and magnetic fields in terms of power series of angular frequency, and show that to obey Maxwell's equations, the fields must be real when the exponent is even, and imaginary when it is odd. This leads to the result that the scattering equations for direct current fields and for fields proportional to frequency can both be explicitly formulated using a single, real dyadic Green's function. Although the underground current flow in each case is due to different physical phenomena, the interaction of the scattering currents is of the same type in both cases. This implies that direct current resistivity, magnetometric resistivity and electric and magnetic measurements at low induction numbers can all be modelled in parallel using basically the same algorithm. We make a systematic derivation of the quantities required and show that for these cases they can all be expressed analytically. The problem is finally formulated as the solution of a system of linear equations. The matrix of the system is real and does not depend on the type of source or receiver. We present modelling results for different arrays and apply the algorithm to the interpretation of field data. We assume the standard dipoledipole resistivity array for the direct current case, and vertical and horizontal magnetic dipoles for induction measurements. In the case of magnetometric resistivity we introduce a moving array composed of an electric dipole and a directional magnetometer. The array has multiple separations for depth discrimination and can operate in two modes. The mode where the predominant current flow runs along the profile is called MMR-TM. This mode is more sensitive to lateral variations in resistivity than its counterpart, MMR-TE, where the mode of conduction is predominantly perpendicular to the profile.  相似文献   

6.
Summary. A conducting slab of finite thickness divided into three segments of different conductivities and overlying a perfect conductor is proposed as a suitable two-dimensional 'control' model for testing the accuracy of the various numerical modelling programs that are available for calculating the fields induced in the Earth by an external, time-varying magnetic source. An analytic solution is obtained for this control model for the case of the magnetic field everywhere parallel to the conductivity boundaries ( B -polarization). Values of the field given by this solution for a particular set of model parameters are calculated at selected points on the surface and on a horizontal plane inside the conductor, and are tabulated to three figure accuracy for reference. They are used to check the accuracy of the results given by the finite difference program of Brewitt-Taylor & Weaver and the finite element program of Kisak & Silvester for the same model. Improved formulae for calculating the derived electric field components in B -polarization are first developed for incorporation in the finite difference program, and these give surface electric fields within 1 per cent of the analytic values, while all three field components inside the conductor are calculated to better than 96 per cent accuracy by the finite difference program. The results given by the finite element program are not quite so satisfactory. Errors somewhat greater than 10 per cent are present and although the program requires much less disk space it takes rather more CPU time to complete the calculations.  相似文献   

7.
Telluric distortion occurs when electric charges accumulate along near-surface inhomogeneities. At low frequencies, the electric currents associated with these charges can be neglected compared to currents induced deeper in the Earth. At higher frequencies, the magnetic fields associated with these currents may be significant. Some parameters describing the distortion magnetic fields can be estimated from measured magneto-telluric impedance matrices. For regional magnetic fields aligned with regional strike directions, parameters associated with the distortion magnetic field component parallel to the regional magnetic field are undeterminable, whereas parameters associated with the distortion magnetic field component perpendicular to the regional magnetic field can be estimated. Optimal estimates are straightforward even for the realistic case of measurement errors that are correlated between elements of a measured impedance matrix. In a simple example of a 1-D anisotropic model with anisotropy direction varying with depth, the modelling of distortion magnetic fields results in regional impedance estimates corresponding more closely to the responses of uncoupled isotropic models, allowing sensible interpretation of an additional one and a half decades of data.  相似文献   

8.
Summary. In 1976, seven stations measuring the variations of the telluric and geomagnetic fields in the period range 1–125 s were operated in the southern part of the Rhinegraben. The study of the recordings shows that the telluric field is linearly polarized according to a direction perpendicular to that of the horizontal anomalous magnetic fields and that telluric and anomalous magnetic fields have the same time dependence. The conducted currents responsible for the anomaly flow probably into the superficial conductive layer.  相似文献   

9.
Summary. Most of the Earth's magnetic field and its secular change originate in the core. Provided the mantle can be treated as an electrical insulator, stochastic inversion enables surface observations to be analysed for the core field. A priori information about the variation of the field at the core boundary leads to very stringent conditions at the Earth's surface. The field models are identical with those derived from the method of harmonic splines (Shure, Parker & Backus) provided the a priori information is specified appropriately.
The method is applied to secular variation data from 106 magnetic observatories. Model predictions for fields at the Earth's surface have error estimates associated with them that appear realistic. For plausible choices of a priori information the error of the field at the core is unbounded, but integrals over patches of the core surface can have finite errors. The hypothesis that magnetic fields are frozen to the core fluid implies that certain integrals of the secular variation vanish. This idea is tested by computing the integrals and their standard and maximum errors. Most of the integrals are within one standard deviation of zero, but those over the large patches to the north and south of the magnetic equator are many times their standard error, because of the dominating influence of the decaying dipole. All integrals are well within their maximum error, indicating that it will be possible to construct core fields, consistent with frozen flux, that satisfy the observations.  相似文献   

10.
Summary. Exact spherical harmonic expansions are given for calculating the gravitational and magnetic fields associated with certain uniform solids of revolution. The figures are those made by rotating a conic section about one of its principal axes. The coefficients in the expansions can be computed accurately and efficiently and this approach leads to a very satisfactory method for calculating the fields of geological bodies with approximate circular symmetry about a vertical axis. A complete theory of convergence is given for the expansions. Somewhat unexpectedly, the sphere of convergence is determined by the location of a number of equivalent point or line sources that lie within the body or on its edges.  相似文献   

11.
Summary. Laplace and Bessel Transforms are used to solve for the transient behaviour of the electromagnetic fields after switching off a steady current in a grounded infinitesimal horizontal dipole on the surface of a uniformly conducting half-space. Simple analytic expressions, which are valid for times sufficiently long after the switch that displacement terms can be ignored, are obtained on the surface of the half-space for the electric field and the time derivative of the magnetic field. At the instant of switching an infinitesimally long image becomes established directly under the source dipole. It is the diffusion of this image which gives the vertical magnetic field and horizontal electric fields their transient behaviour. During the transient, there is also a decaying charge distribution on the surface.  相似文献   

12.
The relation between the seafloor electric field and the surface magnetic field is studied. It is assumed that the fields are created by a 2-D ionospheric current distribution resulting in the E-polarization. The layered earth below the sea water is characterized by a surface impedance. The electric field at the seafloor can be expressed either as an inverse Fourier transform integral over the wavenumber or as a spatial convolution integral. In both integrals the surface magnetic field is multiplied by a function that depends on the depth and conductivity of the sea water and on the properties of the basement. The fact that surface magnetic data are usually available on land, not at the sea surface, is also considered. Test computations demonstrate that the numerical inaccuracies involved in the convolution method are negligible. The theoretical equations are applied to calculate the seafloor electric fields due to an ionospheric line current or associated with real magnetic data collected by the IMAGE magnetometer array in northern Europe. Two different sea depths are considered: 100 m (the continental shelf) and 5 km (the deep ocean). It is seen that the dependence of the electric field on the oscillation period is weaker in the 5 km case than for 100 m.  相似文献   

13.
Summary. Analysis of geomagnetic data has shown that the superposed northward magnetic field, which reduces the S q( H ) amplitude at northern mid-latitude stations on Abnormal Quiet Days, and increases the amplitude at stations on the equatorward side of the S q focus, builds up in amplitude over four to five days before the AQD occurs, and subsides over a similar period after the AQD. It is inferred indirectly that the azimuthal component By of the interplanetary magnetic field varies similarly. Data for the opposite meridian show that the imposed field reverses to a southward direction at lower latitudes. The inferred currents to account for these fields are believed to flow in the ionosphere, but to arise from magnetospheric electric fields induced by the solar wind-transported IMF.  相似文献   

14.
A region of enhanced conductivity at the base of the mantle is modelled by an infinitesimally thin sheet of uniform effective conductance adjacent to the core–mantle boundary. Currents induced in this sheet by the temporally varying magnetic field produced by the geodynamo give rise to a discontinuity in the horizontal components of the poloidal magnetic field on crossing the sheet, while the radial component is continuous across the sheet. Treating the rest of the mantle as an insulator, the horizontal components of the poloidal magnetic field and their secular variation at the top of the core are determined from geomagnetic field, secular variation and secular acceleration models. It is seen that for an assumed effective conductance of the sheet of 108  S, which may be not unrealistic, the changes produced in the horizontal components of the poloidal field at the top of the core are usually ≤10 per cent, but corrections to the secular variation in these components at the top of the core are typically 40 per cent, which is greater than the differences that exist between different secular variation models for the same epoch. Given the assumption that all the conductivity of the mantle is concentrated into a thin shell, the present method is not restricted to a weakly conducting mantle. Results obtained are compared with perturbation solutions.  相似文献   

15.
We show that a knowledge of either the signed or the unsigned direction of a potential field on a given smooth surface S , which separates the space into a volume containing the sources and a volume free of sources, sometimes gives enough information for the whole field to be recovered within the free volume, except for a constant multiplier (positive, for the signed case). We show that the best parameter to be considered on the surface S is the number n of loci where the field is known to be either zero (no direction) or normal to the surface. In the case of sources lying outside S ('external-sources' directional problem) we prove that the dimension of the space of solutions is no larger than n –1. This implies uniqueness for the external-sources directional problem when n = 2. In the case of sources lying inside S ('internal-sources' directional problem), we distinguish fields with monopole sources (such as the gravitational field) from those without monopole sources (such as the magnetic field). For gravitational fields, we show that the dimension of the space of solutions cannot exceed n . We note that the only situation of interest is the one for which n = 1, which implies in practice that the surface S is an isopotential and that the problem has a unique solution. For magnetic fields, we show that the dimension of the space of solutions cannot exceed n –1. It follows that the problem has a unique solution when n = 2. This shows in particular that a geomagnetic field with only two poles (south and north magnetic poles) can be recovered, except for a constant multiplier (positive, for the signed case) from directional data gathered at the Earth's surface. Finally, we note that our results are not restricted to the 3-D space and can readily be extended to two dimensions and higher dimensions.  相似文献   

16.
Summary. A simplified model of the solar quiet-time ionospheric current system is used to calculate the induced currents in a model earth. The conductivity is assumed to be constant below a depth of about 400 km and zero above that depth. The current induced in the north—south conductivity anomaly under the Rocky Mountains is then estimated from the time-varying potential difference between points at 30 and 45° latitude at the surface of the conducting sphere. The purpose of these calculations is to investigate whether variations in the latitude of the northern hemisphere current system vortex will substantially alter the relationship between the observed magnetic field components at the Earth's surface and the local magnetic field gradient caused by the conductivity anomaly. We find that a 10° shift in the latitude of the ionospheric current focus causes a change of 6 per cent or less in the transfer function from the field components to the gradient in the total field. Thus such latitude shifts cannot explain much of the magnetic field gradient variation at periods near 24 hr that has been observed near Boulder, Colorado.  相似文献   

17.
Summary. The transient fields resulting from an abrupt current switch-off in a vertically oriented finite loop and a magnetic dipole above a permeable and conducting half-space have been investigated by Fourier methods, utilizing an appropriate Green's function. Two partial fields are identified, one 'radiative' and evanescent and one 'diffusive'. Asymptotic formulae for the diffusive field above the interface, applicable for late times, are developed, and from these the effects of height of the transmitting source and the permeability contrast are calculated. It is shown that for 'late enough' times and at sufficient distances the dipole formulae provide adequate approximations to the field due to a finite loop.  相似文献   

18.
Summary. Babour & Mosnier's results showing no frequency dependence between the anomalous horizontal magnetic field above a conductor and the difference between the horizontal magnetic fields above and below the conductor over a wide range of frequencies led them to conclude that this effect is due to current channelling. A two-dimensional numerical model of a conductive channel, with a uniform horizontal source field, shows the same effect over a wide range of frequencies. Thus local induction can show the same effect.  相似文献   

19.
Summary. The magnetic viscosity of 334 Upper Tertiary and pre-Bruhnes Quaternary volcanic rocks from the Massif Central (France) and the Steens Mountain (Oregon), and of 40 basaltic cores from DSDP leg 37 has been investigated. Thellier's viscosity index follows a log normal distribution with mean values equal to 6 and 3.5 per cent for subaerial and submarine rocks respectively. For subaerial rocks, the average intensity of the viscous remanent magnetization (VRM) acquired in the Earth's field since the beginning of the Bruhnes polarity epoch ( t = 0.7 Myr) is estimated to be equal to one-quarter of the average intensity of the primary remanence. Alternating field demagnetization of VRMs acquired in low fields for acquisition times t ranging from 2 day to 32 month indicates the resistance to alternating fields is quite different from sample to sample and increases linearly with log t.
Néel's diagnostic parameter of domain structure of the grains involved in magnetic viscosity shows that hard VRM is carried by single-domain grains and soft VRM carried by multidomain particles. Single domain particles carrying hard VRM in subaerial volcanic rocks are almost equant magnetite intergrowths with size near the superparamagnetism threshold, resulting from high temperature oxidation of titanomagnetite. Soft VRM is carried by low Curie point homogeneous titanomagnetite. Unlike his single domain theory, Néel's multidomain theory of magnetic viscosity does not account quantitatively for the resistance of VRM to alternating fields.  相似文献   

20.
Recent conceptual models have attributed the weak depositional remanent magnetizations observed in natural sediments to flocculation processes in the water column. Magnetic particles included into flocs have not only to rotate themselves into alignment with the geomagnetic field but also the larger particles to which they are attached, making remanence acquisition an inefficient process. Alignment is hindered further when the magnetization vectors of the particles in any given floc partially cancel, reducing the overall magnetic torque. Existing numerical simulations of flocculation effects on depositional remanence formation have been limited to spherical bodies with translational and rotational motion acting independently of each other. In the case of non-spherical flocs, the translational and rotational motion are coupled and such bodies will describe a complex trajectory through the water column. Calculations will be presented that show the torque exerted on a non-spherical floc by the surrounding water can be orders of magnitude greater than the magnetic torque. Non-spherical flocs will, therefore, align less efficiently with the geomagnetic field and hydrodynamic effects may play an important role in controlling the magnitude of sedimentary remanence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号