首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

2.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

3.
Amphibole is a rock-forming mineral widely existing on the earth. It is easily dissolved and altered during the later stage of diagenesis and mineralization, and often forms chloritization, which is an important indicator for prospecting. To explore amphibole's dissolution process and alteration mechanism, dissolution experiments were carried out under acidic conditions using pargasite-rich amphibole as raw material, and the effects of temperature, p H, and experiment duration on amphibole alteration were investigated. Experimental samples and products were analyzed using X-ray diffractometer, field emission scanning electron microscope, electron probe micro analyzer, and transmission electron microscopy. It was found that many pores and erosion edges are produced after amphibole dissolution, and there is a clear interface between the dissolved residual portion and the parent. The dissolved residual portion remains in the amphibole phase, but as the temperature and time increase, the intensity of the diffraction peak of the phase in the product decreases, and the peak position shifts to a small angle. Many clay minerals such as chlorite and griffithite formed on the amphibole surface. In an environment with strong acidity(p H=3), the amount of chamosite increases with temperature(180°C→210°C→240°C), whereas clinochlore is only increased in a 150–210°C environment. Griffithite growth was observed in the acidic(p H=6) and low temperature(180°C) environments. Based on this analysis, large radius Cl– enters the amphibole lattice or cracks to promote dissolution. The Al-poor and Ca-and Fe-rich regions between the edge and core of the amphibole are caused by dynamic equilibrium in amphibole dissolution and alteration process, which is an essential indicator for the beginning of amphibole dissolution-alteration. Diffusion and the coupled dissolution-reprecipitation mechanism accomplishes the process of dissolution and alteration to form clay minerals. The energy of the system determined by temperature and p H is the key to controlling the rate of growth and nucleation of clay minerals. High temperature and strong acidity will dissolve more iron from amphibole, which is conducive to chlorite growth. Compared to chlorite, griffithite is more sensitive to temperature. Griffithite attaches on the amphibole surface with a star-like in a weak acid and low-temperature environment. The results of this study can provide a mineralogical basis for the analysis of hydrothermal alteration processes and the division of alteration zones.  相似文献   

4.
远硅质建造磷块岩微相研究   总被引:3,自引:0,他引:3  
孟祥化 《地球化学》1979,(2):132-144,i010
The two phosphatic formations distributed in Yunan-Guizhon-Sichuan(Lower Cambrian)and Hubci-Hunan-Guizhou(Late Sinian)which were originally thought to be terrestrial carbonate deposits should be regarded as tele-siloceous formation in character as is evidenced by regional formation sequence patterns. The implications of this observation arc discussed with respect to tectonic and prospecting for P,I, and other base metals. In the light of detailed investigation on mierophase composition microphase Zoning and those features concerning depositional environment and geochemistry a mechanism of phosphate accumulation is proposed with special reference to the role of dynamic chemistry, F, palaeotectonics and palaeoelimatology. It is pointed out by the author that the proposal of chemical deposition suggested by A. V.Kazakov is in conflict with the model of microphase zonation and formation sequence patterns. The relationship is also dealt with between the ratios of CO2/P2O5 and F/P2O5 on the one hand and the mechanism of phosphate accumulation on the other.  相似文献   

5.
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation  相似文献   

6.
Molar-tooth carbonate refers to a sort of rock that has ptygmatical folded structure comparable to the ivory. This kind of carbonate exists in a special time range (from Middle to Neoproterozoic). Its origin and the possibility to use it in stratigraphic correlation of the paleocontinent is the key task of the IGCP447, a project on Proterozoic molar tooth carbonates and the evolution of the earth (2001-2005). The importance lies in that the molar-tooth structure is the key to solving problems related to Precambrian biological and global geochemical events. The molar-tooth structure is associated with microorganisms. Development and recession of such carbonates have relations with the evolution process of early lives and abrupt changes in sea carbonate geochemistry. In recent years, based on researches on petrology, geochemistry and Sr isotope of molar-tooth carbonate in the Jilin-Liaoning and Xuzhou-Huaiyang area, the authors hold that it can be used as a marker for stratigraphic sequence and sedimentary  相似文献   

7.
Carbonate rock outcrops cover 9%–16% of the continental area and are the principal source of the dissolved inorganic carbon (DIC) transferred by rivers to the oceans, a consequence their dissolution. Current estimations suggest that the flux falls between 0.1–0.6 PgC/a. Taking the intermediate value (0.3 PgC/a), it is equal to 18% of current estimates of the terrestrial vegetation net carbon sink and 38% of the soil carbon sink. In China, the carbon flux from carbonate rock dissolution is estimated to be 0.016 PgC/a, which accounts for 21%, 87.5%–150% and 2.3 times of the forest, shrub and grassland net carbon sinks respectively, as well as 23%–40% of the soil carbon sink flux. Carbonate dissolution is sensitive to environmental and climatic changes, the rate being closely correlated with precipitation, temperature, also with soil and vegetation cover. HCO3- in the water is affected by hydrophyte photosynthesis, resulting in part of the HCO3? being converted into DOC and POC, which may enhance the potential of carbon sequestration by carbonate rock dissolution. The possible turnover time of this carbon is roughly equal to that of the sea water cycle (2000a). The uptake of atmospheric/soil CO2 by carbonate rock dissolution thus plays an important role in the global carbon cycle, being one of the most important sinks. A major research need is to better evaluate the net effect of this sink in comparison to an oceanic source from carbonate mineral precipitation.  相似文献   

8.
Defining the Jurassic-Cretaceous boundary is a controversy in stratigraphic study of the world. It has been widely accepted that this boundary can be defined at the bottom of Berriasian in Tethys, with the appearance of the ammonite Berriasella jacobi dating to ca. 145 Ma. However, it is difficult for the widespread terrestrial deposits in China to correlate with the international standard of marine facies. The Somanakamura Group in Japan is represented by a succession of marine-continental transitional strata. It provides a bridge of marine and nonmarine stratigraphic correlation. The ammonite and radiolarian fossils preserved in this group suggest an age from Bajocian to early Valanginian. The J-K boundary was defined in or atop the Tomizawa Formation of the group according to the ammonite data. The present authors study the fossil spores and pollen newly found from the Tomizawa and Koyamada formations. Three assemblages have been recognized. They are Assemblage 1 (Cyathidites-Classopollis) from the upper part of the Tomizawa Formation, Assemblage 2 (Cyathidites-Jiaohepollis) from the lower part of the Koyamada Formation, and Assemblage 3 (Cyathidites-Spheripollenites-Ephedripites) from the middle to upper part of the Koyamada Formation. With the reference of ammonite evidence, the J-K boundary can be defined between Assemblage 1 and Assemblage 2. This palynological J-K boundary can be correlated with that of terrestrial sequence in China. However, local biostratigraphy imply that the continental J-K boundary in China is of 135 or 137 Ma age. It has a considerable discrepancy from the marine standard. Biogeographically, the distribution pattern of spores and pollen in southern China is in accordance with that in the Somanakamura Group, which parallels the Tuchengzi Formation in northeastern China. By the palynological correlation between the Somanakamura Group and the strata in southern China, and then with the sequence in northeastern China, it is suggested that the continental J-K boundary is located in the Tuchengzi Formation.  相似文献   

9.
Cassiterites from both the Beauvoir and Montebras geanited of France are typically rich in trace elements such as Nb and Ta, and contain quite a number of inclusions of columbite (dominantly manganocolumbite).Two thin sections of cassiterite crystals have been prepared for Raman microprobe analysis).The spectra obtained from different parts of the cassiterites show that the vibra-tion frequency of the A1g peak decreases with increasing Nb ,Ta,Fe and Mn atomic contents.It is worthy to note that a new peak (named the “An peak”) has been reported for the first time in the part with oriented columbite inclusions.The vibration frequency varies from 827 to 830 cm^-1.The presence of th enew peak may be attributed to structural changes of cassiterite due to the excess of Nb and Ta in the lattice and the exsolution of columbite inclusions in cassiterite.  相似文献   

10.
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.  相似文献   

11.
Based on detailed geologic study,the important role of structuring in the formation of gold deposits in the area is discussed with special reference to structural evolution,Syngenetic faulting contemporaneous with tectonic-volcanic events is thought to be responsible for providing the ore-forming material at depth.The lithofacies formed by highly alternating deposition of terrestrial and carbonate detritus is chemically characterized by the assemblage of Au-Sb-As,constituteing a favorable source bed for the activation and enrichment of gold.This gold source bed has undergone four major stages of structural deformation,accompanied by multi-staged alteration and mineralization.  相似文献   

12.
Fourier-Transform Infrared (FT-IR) spectroscopy has been used extensively to characterize natural organic matter (NOM). Absorption bands at 1100-1000 cm^-1 in the FT-IR spectra of NOM have been frequently assigned to alcoholic and polysaccharide C-O stretching or to vibrations of SiO2-related impurities. However, these interpretations do not consider that a strong band associated with P-O bonds of phosphate also appears in the same region. We evaluated the correlation between absorbance in this region and P content of 19 NOM samples from terrestrial, aquatic and plant shoot sources. In the spectra of 10 humic and fulvic acid samples, shoulder to minor bands appeared around 1050 cm^-1. Absorbance intensity at 1050 cm^-1 (Y) was linearly related to P content (X) by the following: Y=4.38X+0.3 l, with R2=0.90. We did not observe such a close correlation between absorbance and P content in two aquatic NOM samples. Apparently, this is because the aquatic NOM samples were concentrated by reverse osmosis, which would have concentrated not only humic and fulvic acids but also other soluble organic solutes present in natural waters. In the FT-IR spectra of seven dissolved organic matter (DOM) samples obtained from dried plant shoots, broad and/or multiple bands around 1075 cm^-1 were observed with a shoulder at 977 cm^-1. These characteristics were more like those of organic phosphate compounds (such as inositol hexaphosphate). However, solution 31P nuclear magnetic resonance spectroscopic analysis showed no significant amount of organic phosphate present in these samples.  相似文献   

13.
The Lower Ordovician Shirgesht Formation in central Iran is composed of siliciclastic and carbonate rocks deposited in diverse coastal and marine shelfal environments (tidal flat, lagoon, shoreface, offshore-shelf and carbonate ramp). Five facies associations contain diverse ichnofossil assemblages that show distinct proximal to distal trends formed in a wide range of physical-chemical conditions. The ethological groups of trace fossils in the Shirgesht Formation reflect a gradient of depositional stress conditions across a wave-influenced shoreline and shelf. Deposits of wave-influenced environments make up a significant component of the geological record of shallow marine settings, and the ability to determine paleoenvironments in detail in such successions is critical for reconstruction of depositional histories and sequence-stratigraphic interpretation.The Cruziana ichnofacies of the study shows highly diverse suites that record the establishment of a benthic community under stable conditions and a long-term colonization window. The Skolithos ichnofacies recognized is a low diversity opportunistic ichnocommunity suite that resulted from colonization after tempestite deposition in a stressed environment. The strata record an onshore to offshore replacement of the Cruziana ichnofacies (with abundant feeding traces of deposit-feeders) by the Skolithos ichnofacies (dominated by suspension-feeders and predators). A transitional zone between the two ichnofacies coincides with the offshore-transition/distal lower-surface deposits. The distribution of ichnofacies, the diversity and range of ethological characteristics reflected by the ichnogenera, and the wide range of wave-dominated coastal facies demonstrate the potential to use individual trace fossils and ichnofacies for significantly refined palaeoenvironmental analysis of wave-dominated coastal settings, particularly in Ordovician successions.  相似文献   

14.
Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basin. The C/N ratios show that the organic matter is characterized by a mixture of terrestrial and phytoplanktonic contributions. The relative importance of different sources depend on climate conditions and most of organic matter is of terrestrial origin. The relationships between C, S and Fe indicate that the brackish environment with alternation of anoxia and low-O2 developed in the bottom waters during the deposition of these organic-rich sediments as a result of a mixed setting of thermal stratification and salinity stratification, the latter being the consequence of intermittent sea water incursion. Bacterial sulfate reduction is the most effective early diagenesis affecting the preservation of organic matter. The intensity of sulfate reduction is related to the relative proportion of met  相似文献   

15.
Tantalite,occurring as intergranular tabular crystals,was reported for the first time in the Suzhou granite.Electron microprobe analyses show that it is rich in W and Ti,with a Ta/(Ta Nb) ratio ranging from 0.5 to 0.73 and a Mn(Mn Fe) ratio between 0.20 and 0.40.It is structurally distinct from isomorphic tapiolite by a remarked Ag Raman peak at 880cm^-1.The associated zircon is striking by significant enrichment of Hf,with the HfO2 content amounting up to 35%-40%,The discovery of tantalite suggests that the Suzhou granite should be classified as a S-type granite instead of A-type as considered previously.  相似文献   

16.
The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon iso-topic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised δ13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency.  相似文献   

17.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.  相似文献   

18.
碳酸盐岩生油岩的有机地球化学、岩石学特征   总被引:13,自引:1,他引:13  
Features of oil-generating carbonate rocks are studied in terms of petrology and organic geochemistry of fluorescent materials in rocks. It is postulated by the authors that the organic carbon content in oil-generatlng carbonate rocks is necessarily lower than that in shales, and the possible cause of this observation is discussed. The quality of oil-ganerating carbonate rocks may be judged by aromatic structure index,amino acid, pigment index, and DTA data on organic matter. However, the application of presently available organic geochemical criteria to non-oil-generating reservoir rocks may always give misleading results. To circumvent this difficulty, it is necessary first to make distinction between primary and secondary organic matter by cxamining the fluorescent materials under a fluorescence microscope. Measurementof radical content of the organic substances and DTA are useful techniques to determine the degree of maturation. The maturation of organic substances proceeds at a lower rate in carbonate rocks than in shales. It is likely, therefore, that some older carbonate strata can also be promising areas for petroleum exploration. Oil-generating carbonate rocks consist mainly of mierite limestones rich in organic matter and are thought to be formed under low-encrgy environment. Consequently, petrological(especially mierolithofacies) studies are very important in evaluating carbonate source rocks.  相似文献   

19.
To determine carbonate contents of deep sea sediments using physical properties is an enjoyable and efficient paleoceanographic way, which has been processed successfully in many studies based on a low resolution, but rather than a high one. A series of mathematical methods including the least square method were used in this study to build multiple regression equations between color reflectance and carbonate content, and between magnetic susceptibility and carbonate content, based on the data of color reflectance and magnetic susceptibility collected via the ODP Leg 184 cruise, as well as measured carbonate contents. We found that percent carbonate estimated with diffuse reflectance is closer to the measured one than that estimated with magnetic susceptibility, and the multiple regression equation is varied in different sites.  相似文献   

20.
We report new petrological, phase equilibria modeling, and fluid inclusion data for pelitic and mafic granulites from Rundv?gshetta in the highest-grade region of the Neoproterozoic Lützow-Holm Complex(LHC),East Antarctica, and provide unequivocal evidence for fluid-rock interaction and high-temperature metasomatism in the presence of brine fluid. The studied locality is composed dominantly of well-foliated pelitic granulite(K-feldspar+quartz+sillimanite+garnet+ilmenite) with foliation-parallel bands and/or layers of mafic granulite(plagioclase+orthopyroxene+garnet+ilmenite+quartz+biotite). The boundary between the two lithologies is defined by thin(about 1 -20 cm in thick) garnet-rich layers with a common mineral assemblage of garnet+plagioclase+quartz+ilmenite+biotite ? orthopyroxene. Systematic increase of grossular and decrease of pyrope contents in garnet as well as decreasing Mg/(Fe+Mg) ratio of biotite from the pelitic granulite to garnet-rich rock and mafic granulite suggest that the garnet-rich layer was formed by metasomatic interaction between the two granulite lithologies. Phase equilibria modeling in the system NCKFMASHTO demonstrates that the metasomatism took place at 850 -860℃, which is slightly lower than the peak metamorphism of this region, and the modal abundance of garnet is the highest along the metapeliteemetabasite boundary(up to 40%), which is consistent with the field and thin section observations. The occurrence of brine(7.0 -10.9 wt.% Na Cleqfor ice melting or 25.1 -25.5 wt.% NaC leqfor hydrohalite melting) fluid inclusions as a primary phase trapped within plagioclase in the garnet-rich layer and the occurrence of Cl-rich biotite(Cl = 0.22 -0.60 wt.%) in the metasomatic rock compared to that in pelitic(0.15 -0.24 wt.%) and mafic(0.06-0.13 wt.%) granulites suggest infiltration of brine fluid could have given rise to the high-temperature metasomatism. The fluid might have been derived from external sources possibly related to the formation of major suture zones formed during the Gondwana amalgamation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号