首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

4.
5.
6.
7.
8.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
UBVRI CCD photometry in a wide field around two young open clusters, NGC 663 and 654, has been carried out. Hα and polarimetric observations for the cluster NGC 654 have also been obtained. We use the photometric data to construct colour–colour and colour–magnitude diagrams, from which we can investigate the reddening, age, mass and evolutionary states of the stellar contents of the these clusters. The reddening across the cluster regions is found to be variable. There is evidence for anomalous reddening law in both clusters; however, more infrared and polarimetric data are needed to conclude about the reddening law. Both clusters are situated at about a distance of 2.4 kpc. Star formation in both clusters is found to be a continuous process. In the case of NGC 663, star formation seems to have taken place sequentially, in the sense that formation of low-mass stars precedes the formation of most massive stars. Whereas, in the case of NGC 654, formation of low-mass stars did not cease after the formation of most massive stars in the cluster.  相似文献   

17.
We investigate the dependence of stellar properties on the initial kinematic structure of the gas in star-forming molecular clouds. We compare the results from two large-scale hydrodynamical simulations of star cluster formation that resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical, but in the new simulation the power spectrum of the velocity field imposed on the cloud initially and allowed to decay is biased in favour of large-scale motions. Whereas the calculation of Bate et al. began with a power spectrum   P ( k ) ∝ k −4  to match the Larson scaling relations for the turbulent motions observed in molecular clouds, the new calculation begins with a power spectrum   P ( k ) ∝ k −6  .
Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment.  相似文献   

18.
We present predictions for the numbers of ultracool dwarfs in the Galactic disc population that could be detected by the WFCAM/UKIDSS Large Area Survey and Ultra Deep Survey. Simulated samples of objects are created with masses and ages drawn from different mass functions and birthrates. Each object is then given absolute magnitudes in different passbands based on empirically derived bolometric correction versus effective temperature relationships (or model predictions for Y dwarfs). These are then combined with simulated space positions, velocities and photometric errors to yield observables such as apparent magnitudes and proper motions. Such observables are then passed through the survey selection mechanism to yield histograms in colour. This technique also produces predictions for the proper motion histograms for ultracool dwarfs and estimated numbers for the as yet undetected Y dwarfs. Finally, it is shown that these techniques could be used to constrain the ultra-low-mass mass function and birthrate of the Galactic disc population.  相似文献   

19.
We have carried out Monte Carlo simulations in which we generate a random pairing of objects drawn from a pre-assumed single-star power-law initial mass function (IMF), which we call the fundamental IMF. We show how the mass functions of primary stars and secondary stars and the mass function of the total mass of systems (if we could resolve them) differ from the underlying fundamental IMF for different slopes of this IMF. We also compare our results with the observed IMF, the binary frequency and the binary mass-ratio distributions for field stars and conclude that the fundamental IMF of subsolar mass stars could be steeper than is currently believed. In other words, the low-mass turn-over of the observed ('apparent') IMF could be spurious, if the main-sequence binary fraction of field stars is close to 100 per cent (perhaps owing to invisible companions).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号