首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal GCM-based temperature and precipitation projections for the end of the 21st century are presented for five European regions; projections are compared with corresponding estimates given by the PRUDENCE RCMs. For most of the six global GCMs studied, only responses to the SRES A2 and B2 forcing scenarios are available. To formulate projections for the A1FI and B1 forcing scenarios, a super-ensemble pattern-scaling technique has been developed. This method uses linear regression to represent the relationship between the local GCM-simulated response and the global mean temperature change simulated by a simple climate model. The method has several advantages: e.g., the noise caused by internal variability is reduced, and the information provided by GCM runs performed with various forcing scenarios is utilized effectively. The super-ensemble method proved especially useful when only one A2 and one B2 simulation is available for an individual GCM. Next, 95% probability intervals were constructed for regional temperature and precipitation change, separately for the four forcing scenarios, by fitting a normal distribution to the set of projections calculated by the GCMs. For the high-end of the A1FI uncertainty interval, temperature increases close to 10°C could be expected in the southern European summer and northern European winter. Conversely, the low-end warming estimates for the B1 scenario are ~ 1°C. The uncertainty intervals of precipitation change are quite broad, but the mean estimate is one of a marked increase in the north in winter and a drastic reduction in the south in summer. In the RCM simulations driven by a single global model, the spread of the temperature and precipitation projections tends to be smaller than that in the GCM simulations, but it is possible to reduce this disparity by employing several driving models for all RCMs. In the present suite of simulations, the difference between the mean GCM and RCM projections is fairly small, regardless of the number or driving models applied.  相似文献   

2.
Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.  相似文献   

3.
The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.  相似文献   

4.
Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.  相似文献   

5.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

6.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

7.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

8.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

9.
The general circulation model (GCM) used in this study includes a prognostic cloud scheme and a rather detailed radiation scheme. In a preceding paper, we showed that this model was more sensitive to a global perturbation of the sea surface temperatures than most other models with similar physical parametrization. The experiments presented here show how this feature might depend on some of the cloud modelling assumptions. We have changed the temperature at which the water clouds are allowed to become ice clouds and analyzed separately the feedbacks associated with the variations of cloud cover and cloud radiative properties. We show that the feedback effect associated with cloud radiative properties is positive in one case and negative in the other. This can be explained by the elementary cloud radiative forcing and has implications concerning the use of the GCMs for climate sensitivity studies.  相似文献   

10.
In order to perform hydrological studies on the PRUDENCE regional climate model (RCM) simulations, a special focus was put on the discharge from large river catchments located in northern and central Europe. The discharge was simulated with a simplified land surface (SL) scheme and the Hydrological Discharge (HD) model. The daily fields of precipitation, 2 m temperature and evapotranspiration from the RCM simulations were used as forcing. Therefore the total catchment water balances are constrained by the hydrological cycle of the different RCMs. The validation of the simulated hydrological cycle from the control simulations shows that the multi-model ensemble mean is closer to the observations than each of the models, especially if different catchments and hydrological variables are considered. Therefore, the multi-model ensemble mean can be used to largely reduce the uncertainty that is introduced by a single RCM. This also provides more confidence in the future projections for the multi-model ensemble means. The scenario simulations predict a gradient in the climate change signal over Northern and Central Europe. Common features are the overall warming and the general increase of evapotranspiration. But while in the northern parts the warming will enhance the hydrological cycle leading to an increased discharge, the large warming, especially in the summer, will slow down the hydrological cycle caused by a drying in the central parts of Europe which is accompanied by a reduction of discharge. The comparison of the changes predicted by the multi-model ensemble mean to the changes predicted by the driving GCM indicates that the RCMs can compensate problems that a driving GCM may have with local scale processes or parameterizations.  相似文献   

11.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

12.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

13.
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.  相似文献   

14.
To explore processes involved in glacial inception at 116 kaBP, the response of an atmospheric general circulation model (AGCM) to changes in lower boundary conditions is investigated. Two 116 kaBP experiments are conducted to examine the importance of sea surface conditions (sea surface temperature and sea ice distribution): one with the present-day sea surface conditions, and the other with 116 kaBP sea surface conditions. These two different sea surface conditions are obtained from simulations using an earth system climate model of intermediate complexity. Perennial snow cover occurred over the Canadian Archipelago under 116 kaBP orbital and CO2 forcing with present-day "warm" sea surface conditions, and further expanded over northeastern Canada when 116 kaBP "cool" sea surface conditions were applied. The net positive accumulation in northeastern Canada, with little in Alaska, is in good agreement with geological records. Two additional 116 kaBP experiments are conducted to examine the combined importance of sea surface conditions and land surface conditions (vegetation): one with the present-day sea surface and modified land surface conditions, and the other with 116 kaBP sea surface and modified land surface conditions. Modifying vegetation, based on cooling during summer induced by 116 kaBP sea surface conditions, leads to much larger areas of perennial snow cover. Only when 116 kaBP sea surface conditions are applied, is a realistic global net snow accumulation rate obtained. Contrary to the earlier ice age hypothesis, our results suggest that the capturing of glacial inception at 116 kaBP requires the use of "cooler" sea surface conditions than those of the present climate. Also, the large impact of vegetation change on climate suggests that the inclusion of the vegetation feedback is important for model validation, at least, in this particular period of Earth history.  相似文献   

15.

This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 \(^{\circ }\)C across the entire peninsula. Temperature increase is more substantial in autumn and winter (\(\sim \) 2 \(^{\circ }\)C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation (\(\sim \) 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.

  相似文献   

16.
Regional climate models(RCMs) can provide far more precise information than general circulation models(GCMs).However,RCMs depend on GCM results or re-analysis products providing boundary conditions,especially for future climate scenarios.Meanwhile,the capacity of RCMs to reproduce precipitation is strongly connected to its performance on circulation and moisture transport simulations in the low troposphere,which is the key problem with RCMs at present.In the Regional Climate Model Inter-comparison Project for East Asia(RMIP III),the results of ECHAM5/MPI-OM(the European Centre-Hamburg model version 5/Max Planck Institute Ocean Model,simplified as E5OM here) are used to drive RCMs for the past(1978?2000) climate simulation and future(2038?70) climate scenarios.Therefore,it is necessary to test E5OM’s ability to represent atmospheric circulation,which defines the large-scale circulation for RCMs.Here,comparisons between the E5OM results and NCEP/NCAR(simplified as NCEP) re-analysis data in the low troposphere for the years 1978 to 2000 are performed.The results show that E5OM results can generally reproduce atmospheric circulations in the low troposphere.However,differences can be detected in East Asian summer and winter monsoon simulations.For summer,there is an anti-cyclone circulation for the difference of wind vector at 850 hPa in Southeast China,the Indo-China Peninsula,the South China Sea,and the northwestern Pacific.For winter,due to the weaker northwesterly wind in Northeast Asia,the northeasterly wind from the Indo-China Peninsula to Taiwan in E5OM extends northward with greater intensity than that in NCEP.These differences will have a considerable influence on the low level atmospheric circulation and water vapor transport as well as the location and intensity of the precipitation.Therefore,when E5OM results are to be used as initial and boundary conditions to drive RCMs,the differences between NCEP and E5OM should be considered.  相似文献   

17.
We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables.  相似文献   

18.
19.
Miao Yu  Guiling Wang 《Climate Dynamics》2014,42(9-10):2521-2538
Biases existing in the lateral boundary conditions (LBCs) influence climate simulations in regional climate models (RCMs). Correcting the biases in global climate model (GCM)-produced LBCs before running RCMs was proposed in previous studies as a possible way to reduce the GCM-related model dependence of future climate projections using RCMs. In this study the ICTP Regional Climate Model Version 4 (RegCM4) is used to investigate the impact of LBC bias correction on projected future changes of regional climate in West Africa. To accomplish this, two types of present versus future simulations are conducted using RegCM4: a control type where both the present and future LBCs are derived directly from the GCM output (as is done in most regional climate downscaling studies); an experiment type where the present-day LBCs are from reanalysis data and future LBCs are derived by combining the reanalysis data and the GCM-projected LBC changes. For each type of simulations, three different sets of LBCs are experimented on: 6-hourly synoptic forcing directly from the reanalysis or GCM, 6-hourly data interpolated from monthly climatology (without diurnal cycle), and 6-hourly data interpolated from the month-specific climatology of diurnal cycles. It is found that the simulations using different LBCs produce similar present-day summer rainfall patterns, but the predicted future changes differ significantly depending on how the LBC bias correction is treated. Specifically, both the bias correction applied at the synoptic scale and the bias correction applied to the monthly interpolated LBCs without diurnal cycle produce a spurious drying signal caused by physical inconsistency in the corrected future LBCs. Interpolated monthly LBCs with diurnal cycle alleviate the problem to a large extent. These results suggest that using bias-corrected LBCs to drive regional climate models may not guarantee reliable future projections although reasonable present climate can be simulated. Physical inconsistencies may be contained in the bias-corrected LBCs, increasing the uncertainties of RCM-produced future projections.  相似文献   

20.
To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号