首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the influence of afforestation on the water regime in two catchments in the Jizera Mountains that are similar in size and altitude but have different afforestation pattern. In this paper a range of different modelling tools is used to establish whether the differences in catchment water regime can be quantified and attributed to differences in catchment characteristics. Frequency analysis of low and high flows and a number and duration of flows over a threshold value are used to look for the differences in flow regime in both catchments. Low flow conditions are modelled using the Wittenberg nonlinear store approach. A rainfall-runoff process is modelled using a Data Based Mechanistic approach. The results indicate that the differences in the catchment response to external climatic factors outweigh the influence of land use apart from the low flows, where the changes in the response might be attributed to afforestation.  相似文献   

4.
The hydrologic effect of replacing pasture or other short crops with trees is reasonably well understood on a mean annual basis. The impact on flow regime, as described by the annual flow duration curve (FDC) is less certain. A method to assess the impact of plantation establishment on FDCs was developed. The starting point for the analyses was the assumption that rainfall and vegetation age are the principal drivers of evapotranspiration. A key objective was to remove the variability in the rainfall signal, leaving changes in streamflow solely attributable to the evapotranspiration of the plantation. A method was developed to (1) fit a model to the observed annual time series of FDC percentiles; i.e. 10th percentile for each year of record with annual rainfall and plantation age as parameters, (2) replace the annual rainfall variation with the long term mean to obtain climate adjusted FDCs, and (3) quantify changes in FDC percentiles as plantations age. Data from 10 catchments from Australia, South Africa and New Zealand were used. The model was able to represent flow variation for the majority of percentiles at eight of the 10 catchments, particularly for the 10–50th percentiles. The adjusted FDCs revealed variable patterns in flow reductions with two types of responses (groups) being identified. Group 1 catchments show a substantial increase in the number of zero flow days, with low flows being more affected than high flows. Group 2 catchments show a more uniform reduction in flows across all percentiles. The differences may be partly explained by storage characteristics. The modelled flow reductions were in accord with published results of paired catchment experiments. An additional analysis was performed to characterise the impact of afforestation on the number of zero flow days (Nzero) for the catchments in group 1. This model performed particularly well, and when adjusted for climate, indicated a significant increase in Nzero. The zero flow day method could be used to determine change in the occurrence of any given flow in response to afforestation. The methods used in this study proved satisfactory in removing the rainfall variability, and have added useful insight into the hydrologic impacts of plantation establishment. This approach provides a methodology for understanding catchment response to afforestation, where paired catchment data is not available.  相似文献   

5.
This paper describes the use of a continuous streamflow model to examine the effects of climate and land use change on flow duration in six urbanizing watersheds in the Maryland Piedmont region. The hydrologic model is coupled with an optimization routine to achieve an agreement between observed and simulated streamflow. Future predictions are made for three scenarios: future climate change, land use change, and jointly varying climate and land use. Future climate is modelled using precipitation and temperature predictions for the Canadian Climate Centre (CCC) and Hadley climate models. Results show that a significant increase in temperature under the CCC climate predictions produces a decreasing trend in low flows. A significant increasing trend in precipitation under the Hadley climate predictions produces an increasing trend in peak flows. Land use change by itself, as simulated by an additional 10% increase in imperviousness (from 20·5 to 30·5%), produces no significant changes in the simulated flow durations. However, coupling the effects of land use change with climate change leads to more significant decreasing trends in low flows under the CCC climate predictions and more significant increasing trends in peak flows under Hadley climate predictions than when climate change alone is employed. These findings indicate that combined land use and climate change can result in more significant hydrologic change than either driver acting alone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Scenario‐neutral assessments of climate change impact on floods analyse the sensitivity of a catchment to a range of changes in selected meteorological variables such as temperature and precipitation. The key challenges of the approach are the choice of the meteorological variables and statistics thereof and how to generate time series representing altered climatologies of the selected variables. Different methods have been proposed to achieve this, and it remains unclear if and to which extent they result in comparable flood change projections. Here, we compare projections of annual maximum floods (AMFs) derived from three different scenario‐neutral methods for a prealpine study catchment. The methods chosen use different types of meteorological data, namely, observations, regional climate model output, and weather generator data. The different time series account for projected changes in the seasonality of temperature and precipitation, in the occurrence statistics of precipitation, and of daily precipitation extremes. Resulting change in mean AMF peak magnitudes and volumes differs in sign between the methods (range of ?6% to +7% for flood peak magnitudes and ?11% to +14% for flood volumes). Moreover, variability of projected peak magnitudes and flood volumes depends on method with one approach leading to a generally larger spread. The differences between the methods vary depending on whether peak magnitudes or flood volumes are considered and different relationships between peak magnitude and volume change result. These findings can be linked to differing flood regime changes among the three approaches. The study highlights that considering selected aspects of climate change only when performing scenario‐neutral studies may lead to differing representations of flood generating processes by the approaches and thus different quantifications of flood change. As each method comes with its own strengths and weaknesses, it is recommended to combine several scenario‐neutral approaches to obtain more robust results.  相似文献   

8.
This paper examines the timing, nature and magnitude of river response in upland, piedmont and lowland reaches of the Tyne basin, northern England, to high-frequency (20–30 year) changes in climate and flood regime since 1700 AD. Over this period fluvial activity has been characterized by alternating phases of river-bed incision and stability coinciding with non-random, decadal-scale fluctuations in flood frequency and hydroclimate that appear to be linked to changes in large-scale upper atmospheric circulation patterns. Episodes of widespread channel bed incision (1760–1799, 1875–1894, 1955–1969) result from a higher frequency of large floods (> 20 year return period) and cool, wet climate under meridional circulation regimes. Phases of more moderate floods (5–20 year return period), corresponding to zonal circulation types (1820–1874, 1920–1954), are characterized by enhanced lateral reworking and sediment transfer in upper reaches of the catchment, and channel narrowing and infilling downstream. Rates of fluvial activity are reduced in intermediate periods (1800–1819, 1895–1919) with no dominant circulation regime associated with lower flood frequency and magnitude. The results of this study provide a valuable guide for forecasting probable drainage basin and channel response to future climate change.  相似文献   

9.
Hydrological response to expected future changes in land use and climate in the Samin catchment (278 km2) in Java, Indonesia, was simulated using the Soil and Water Assessment Tool model. We analysed changes between the baseline period 1983–2005 and the future period 2030–2050 under both land-use change and climate change. We used the outputs of a bias-corrected regional climate model and six global climate models to include climate model uncertainty. The results show that land-use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual streamflow and surface runoff. The findings of this study will be useful for water resource managers to mitigate future risks associated with land-use and climate changes in the study catchment.  相似文献   

10.
ABSTRACT

The need for a detailed investigation of the Vea catchment water balance components cannot be overemphasized due to its accelerated land-cover dynamics and the associated impacts on the hydrological processes. This study assessed the possible consequences of land-use change scenarios (i.e. business as usual, BAU, and afforestation for the year 2025) compared to the 2016 baseline on the Vea catchment’s water balance components using the Soil and Water Assessment Tool (SWAT) model. The data used include daily climate and discharge, soil and land use/land cover maps. The results indicate that the mean annual water yield may increase by 9.1% under the BAU scenario but decrease by 2.7% under the afforestation scenario; actual evapotranspiration would decrease under BAU but increase under afforestation; and groundwater recharge may increase under both scenarios but would be more pronounced under the afforestation scenario. These outcomes highlight the significance of land-cover dynamics in water resource management and planning at the catchment.  相似文献   

11.
Yi-Ru Chen  Bofu Yu 《水文科学杂志》2013,58(10):1759-1769
Abstract

Over the past century, land-use has changed in southeast Queensland, and when coupled with climatic change, the risk of flooding has increased. This research aims to examine impacts of climate and land-use changes on flood runoff in southeast Queensland, Australia. A rainfall–runoff model, RORB, was calibrated and validated using observed flood hydrographs for one rural and one urbanized catchment, for 1961–1990. The validated model was then used to generate flood hydrographs using projected rainfall based on two climate models: the Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL CM2.1) and the Conformal-Cubic Atmospheric Model (CCAM), for 2016–2045. Projected daily rainfall for the two contrasting periods was used to derive adjustment factors for a given frequency of occurrence. Two land-use change scenarios were used to evaluate likely impacts. Based on the projected rainfall, the results showed that, in both catchments, future flood magnitudes are unlikely to increase for large flood events. Extreme land-use change would significantly impact flooding in the rural catchment, but not the urbanized catchment.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

12.
Hydrologic models are useful to understand the effects of climate and land‐use changes on dry‐season flows. In practice, there is often a trade‐off between simplicity and accuracy, especially when resources for catchment management are scarce. Here, we evaluated the performance of a monthly rainfall–runoff model (dynamic water balance model, DWBM) for dry‐season flow prediction under climate and land‐use change. Using different methods with decreasing amounts of catchment information to set the four model parameters, we predicted dry‐season flow for 89 Australian catchments and verified model performance with an independent dataset of 641 catchments in the United States. For the Australian catchments, model performance without catchment information (other than climate forcing) was fair; it increased significantly as the information to infer the four model parameters increased. Regressions to infer model parameters from catchment characteristics did not hold for catchments in the United States, meaning that a new calibration effort was needed to increase model performance there. Recognizing the interest in relative change for practical applications, we also examined how DWBM could be used to simulate a change in dry‐season flow following land‐use change. We compared results with and without calibration data and showed that predictions of changes in dry‐season flow were robust with respect to uncertainty in model parameters. Our analyses confirm that climate is a strong driver of dry‐season flow and that parsimonious models such as DWBM have useful management applications: predicting seasonal flow under various climate forcings when calibration data are available and providing estimates of the relative effect of land use on seasonal flow for ungauged catchments.  相似文献   

13.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

14.
Understanding and modelling pluvial flood patterns is pivotal for the estimation of flood impacts in urban areas, especially in a climate change perspective. However, urban flood modelling under climate change conditions poses several challenges. On one hand, the identification and collection of climate change data suitable for flood-related evaluations requires consistent computational and scientific effort. On the other hand, large difficulties can arise in the reproduction of the rainfall-runoff transformation process in cases when only little information about the subsurface processes is known. In this perspective, a simplified approach is proposed to address the challenges regarding the quantitative estimation of climate change effects on urban flooding for real case applications. The approach is defined as “bottom-up” because climate change information is not included in flood modelling, but it is only invoked for the interpretation of results. In other words, the challenge faced in this work is the development of a modelling strategy that is expeditious, because it does not require flood simulations for future rainfall scenarios, but only under current climate conditions, thus reducing the overall computational effort; and it is flexible, because results can be easily updated once new climate change data, scenarios or methods become available, without the need of additional flood simulations. To simulate real case applications, the approach is tested for a scenario analysis, where different return periods and hyetograph shapes are used as input for urban inundation modelling in Naples, Italy. The approach can support public and private stakeholders, such as land administrators and water systems managers; moreover, it represents a valuable and effective basis for climate change risk communication strategies.  相似文献   

15.
The effects of afforestation on water resources are still controversial. The aim of this paper is to (i) analyse the hydrological response of an afforested area in the Central Pyrenees and (ii) compare the hydrological response of an afforested area with the response observed in a natural undisturbed forest. The Araguás catchment was cultivated until the 1950s, and then afforested with pines in an effort to control the active degradation processes. The hydrological response was variable and complex, because the discharge was generated by a combination of distinct runoff processes. The hydrological response showed that (i) afforestation produced moderate peak discharges, stormflows and recession limbs, and long rising limbs; (ii) no one single variable was able to explain the hydrological response: rainfall volume and intensity did not explain the hydrological response and antecedent rainfall and initial discharge (indicating antecedent moisture conditions) did play an important role; (iii) seasonal differences were observed suggesting different runoff generating processes; and (iv) the effect of forest cover on peak discharges became less important as the size of the hydrological event increased. The stormflow coefficient showed a clear seasonal pattern with an alternation between a wet period, when the catchment was hydrologically responsive, and a dry summer period when the catchment rarely responded to any event, and two transitional periods (wetting and drying). Compared with a natural forest, the afforested area recorded greater flows and peak discharges, faster response times and shorter recession limbs. Afforestation reduces the water yield and the number of floods compared with non‐vegetated areas and abandoned lands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

We investigate the evidence for changes in the magnitude of peak river flows in Great Britain. We focus on a set of 117 near-natural “benchmark” catchments to detect trends not driven by land use and other human impacts, and aim to attribute trends in peak river flows to some climate indices such as the North Atlantic Oscillation (NAO) and the East Atlantic (EA) index. We propose modelling all stations together in a Bayesian multilevel framework to be better able to detect any signal that is present in the data by pooling information across several stations. This approach leads to the detection of a clear countrywide time trend. Additionally, in a univariate approach, both the EA and NAO indices appear to have a considerable association with peak river flows. When a multivariate approach is taken to unmask the collinearity between climate indices and time, the association between NAO and peak flows disappears, while the association with EA remains clear. This demonstrates the usefulness of a multivariate and multilevel approach when it comes to accurately attributing trends in peak river flows.  相似文献   

17.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Seasonal low flows are important for sustaining ecosystems and for supplying human needs during the dry season. In California's Sierra Nevada mountains, low flows are primarily sustained by groundwater that is recharged during snowmelt. As the climate warms over the next century, the volume of the annual Sierra Nevada snowpack is expected to decrease by ~40–90%. In eight snow‐dominated catchments in the Sierra Nevada, we analysed records of snow water equivalent (SWE) and unimpaired streamflow records spanning 10–33 years. Linear extrapolations of historical SWE/streamflow relationships suggest that annual minimum flows in some catchments could decrease to zero if peak SWE is reduced to roughly half of its historical average. For every 10% decrease in peak SWE, annual minimum flows decrease 9–22% and occur 3–7 days earlier in the year. In two of the study catchments, Sagehen and Pitman Creeks, seasonal low flows are significantly correlated with the previous year's snowpack as well as the current year's snowpack. We explore how future warming could affect the relationship between winter snowpacks and summer low flows, using a distributed hydrologic model Regional Hydro‐ecologic Ecosystem Simulation System (RHESSys) to simulate the response of two study catchments. Model results suggest that a 10% decrease in peak SWE will lead to a 1–8% decrease in low flows. The modelled streams do not dry up completely, because the effects of reduced SWE are partly offset by increased fall or winter net gains in storage, and by shifts in the timing of peak evapotranspiration. We consider how groundwater storage, snowmelt and evapotranspiration rates, and precipitation phase (snow vs rain) influence catchment response to warming. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The Jonkershoek Forestry Research Station was established in the Mediterranean climate region of South Africa in 1935 to implement a multiple catchment experiment to determine the effects of afforestation on water yield. The experiment consists of six neighbouring catchments previously supporting indigenous fynbos shrublands, five of which were sequentially afforested with Pinus radiata plantations every 8 years from 1940 to 1980 and one kept as the control. They conclusively demonstrated a significant impact of afforestation on streamflow. The treatment catchments have seen subsequent plantation rotations since 1980 and rainfall and streamflow observations have been continued to date. Here we describe the site, experimental design, rainfall and streamflow records, instrumentation, and how to access the data. We also provide details of recently installed instrumentation, including full weather stations, fog gauges, and an eddy covariance flux tower. The Jonkershoek catchment experiment was the core of a globally significant interdisciplinary research programme (1935–1992) that shaped most environmental policies and practices relating to biodiversity, forestry, fire and water in South Africa and beyond. The South African Environmental Observation Network (SAEON) inherited the experiment in 2010 and is maintaining it as a long-term eco-hydrological research platform and global change observatory.  相似文献   

20.
The paper presents the outcomes of a study conducted to analyse water resources availability and demand in the Mahanadi River Basin in India under climate change conditions. Climate change impact analysis was carried out for the years 2000, 2025, 2050, 2075 and 2100, for the months of September and April (representing wet and dry months), at a sub‐catchment level. A physically based distributed hydrologic model (DHM) was used for estimation of the present water availability. For future scenarios under climate change conditions, precipitation output of Canadian Centre for Climate Modelling and Analysis General Circulation Model (CGCM2) was used as the input data for the DHM. The model results show that the highest increase in peak runoff (38%) in the Mahanadi River outlet will occur during September, for the period 2075–2100 and the maximum decrease in average runoff (32·5%) will be in April, for the period 2050–2075. The outcomes indicate that the Mahanadi River Basin is expected to experience progressively increasing intensities of flood in September and drought in April over the considered years. The sectors of domestic, irrigation and industry were considered for water demand estimation. The outcomes of the analysis on present water use indicated a high water abstraction by the irrigation sector. Future water demand shows an increasing trend until 2050, beyond which the demand will decrease owing to the assumed regulation of population explosion. From the simulated future water availability and projected water demand, water stress was computed. Among the six sub‐catchments, the sub‐catchment six shows the peak water demand. This study hence emphasizes on the need for re‐defining water management policies, by incorporating hydrological response of the basin to the long‐term climate change, which will help in developing appropriate flood and drought mitigation measures at the basin level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号