首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
引潮力对海洋环流模式的影响   总被引:2,自引:1,他引:1  
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.  相似文献   

2.
《Ocean Modelling》2011,40(3-4):262-274
The impact of topographically catalysed diapycnal mixing on ocean and atmospheric circulation as well as marine biogeochemistry is studied using an earth system model of intermediate complexity. The results of a model run in which diapycnal mixing depends on seafloor roughness are compared to a control run that uses a simple depth-dependent parametrization for vertical background diffusivity. A third model run is conducted that uses the horizontal mean of the topographically catalysed mixing as vertical profile in order to distinguish between the overall effect of larger diffusivities and the spatial heterogeneity of the novel mixing parametrization.The new mixing scheme results in a strengthening of the deep overturning cell and enhances equatorial upwelling. Surface temperatures in the Southern Ocean increase by about 1 K (in the overall effect) whereas cooling of a similar magnitude in low latitudes is generated by the spatial heterogeneity of the mixing. The corresponding changes in the atmospheric circulation involve a weakening of the southern hemispheric Westerlies and a strengthening of the Walker circulation. Biogeochemical changes are dominated by an improved ventilation of the deep ocean from the south. Water mass ages decline significantly in the deep Indian Ocean and the deep North Pacific whereas oxygen increases in the two ocean basins. The representation of the global volume of water with an oxygen concentration lower than 90 μmol/kg in the model is improved using the topography catalysed mixing. Furthermore, primary production is stimulated in equatorial regions through increased upwelling of nutrients and reduced in the oligotrophic gyres.  相似文献   

3.
海洋上混合层中的次级环流可通过物质和能量的垂直输运和混合过程把海洋表层的热量、动量与物质携带到次表层,对海洋上层次级环流生成机制的研究可以丰富对上层海洋的理解和认识。文中利用线性稳定性理论讨论了经典海表Ekman流的不稳定性,提出Ekman流的不稳定性可生成一种新型的次级环流。这种次级环流的空间尺度与雷诺数、Ekman流的垂向衰减速率、水平湍黏性系数与垂向湍黏性系数比值等密切相关,尺度范围从数十米到数千米。数十米量级的次级环流其垂向结构以及次级环流流轴与主流场偏角都与Langmuir环流的特征极为相似,是Langmuir环流形成机制的一种新解释。千米量级的次级环流能够解释黄海浒苔的条带分布。此外,所得次级环流的流轴与主流之间的偏角与科氏力有显著关系,北半球次级环流流轴偏向主流左侧,南半球反之。  相似文献   

4.
The physical processes responsible for the formation in a large‐scale ice–ocean model of an offshore polynya near the Greenwich meridian in the Southern Ocean are analysed. In this area, the brine release during ice formation in autumn is sufficient to destabilise the water column and trigger convection. This incorporates relatively warm water into the surface layer which, in a first step, slows down ice formation. In a second step, it gives rise to ice melting until the total disappearance of the ice at the end of September. Two elements are crucial for the polynya opening. The first one is a strong ice‐transport divergence in fall induced by south‐easterly winds, which enhances the amount of local ice formation and thus of brine release. The second is an inflow of relatively warm water at depth originating from the Antarctic Circumpolar Current, that sustains the intense vertical heat flux in the ocean during convection. The simulated polynya occurs in a region where such features have been frequently observed. Nevertheless, the model polynya is too wide and persistent. In addition, it develops each year, contrary to observations. The use of a climatological forcing with no interannual variability is the major cause of these deficiencies, the simulated too low density in the deep Southern Ocean and the coarse resolution of the model playing also a role. A passive tracer released in the polynya area indicates that the water mass produced there contributes significantly to the renewal of deep water in the Weddell Gyre and that it is a major component of the Antarctic Bottom Water (AABW) inflow into the model Atlantic.  相似文献   

5.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

6.
Since 1960 when I was a senior student, I have studied natural phenomena observed in the hydrosphere and atmosphere by means of chemical elements. Each of the phenomena is, in general, very complicated and so I have attempted to depict the whole picture of material circulation in the marine environment by studying its various aspects at the same time. My chief strategy has been to use natural radio-nuclides as clocks of various phenomena, and to use sediment traps for the determination of vertical fluxes in the ocean. The many results I have obtained can be summarized as follows. 1. I have found that several sporadic events control the material exchange through the atmosphere. These include the strong winter monsoon and typhoons that transport sea-salt particles to the Japanese Islands, theKosa episodes that transport soil dust to the ocean, and storms that result in exchange of sparingly soluble gases such as oxygen and carbon dioxide at the air-sea interface. I have also proved quantitatively that the source of aluminosilicate material in pelagic sediments is air-borne dust. 2. I have proposed a model,Settling model, for the removal of chemical substances from the ocean and found various lines of evidence supporting the model. This model predicts the reversibility in the existing state of insoluble chemical elements in seawater among large settling particles, small suspended particles and colloidal particles that pass through a membrane filter and explains well their behavior in the ocean. I have first precisely measured calcium and iodine in the ocean and have explained their distributions on the basis of the solution and redox equilibria. 3. Using chemical tracers, I have estimated the vertical eddy diffusion coefficients to be 1.2 cm2sec−1 for the Pacific deep water, 0.5 cm2sec−1 for the deep Bering Sea water and 3–80 cm2sec−1 for the Pacific surface water, and have studied the structure of water masses in the western North Pacific and the Sea of Japan. I have also invented and applied a method for the calculation of the age of deep waters using radiocarbon. 4. I have calculated the rates of decomposition of organic matter and the regeneration rates of chemical components in the deep and bottom waters as well as coastal waters by modelling water circulation and mixing. Particulate fluxes and regeneration rates are larger in the deep waters beneath the more biologically productive surface waters. I have stressed the role of silicate in the marine ecosystem, especially in the succession of phytoplankton species. 5. I have quantitatively studied the migration of chemical elements during the early diagenesis of bottom sediments especially manganese using chemical and radiochemical techniques. Manganese is being actively recycled not only in coastal seas but also in pelagic sediments except in the highly oligotrophic subtropical ocean. This recycling can explain the formation of manganese nodules and enables us to balance the manganese budget in the ocean.  相似文献   

7.
A three-dimensional, eddy-permitting ocean circulation model with implemented bottom boundary layer model and flux-corrected transport scheme is used to calculate the pathways and ages of various water masses in the Baltic Sea. The agreement between simulated and observed temperature and salinity profiles of the period 1980–2004 is satisfactory. Especially the renewal of the deep water in the Baltic proper by gravity-driven dense bottom flows is better simulated than in previous versions of the model. Based upon these model results details of the mean circulation are analyzed. For instance, it is found that after the major Baltic inflow in January 2003 saline water passing the Słupsk Furrow flows directly towards northeast along the eastern slope of the Hoburg Channel. However, after the baroclinic summer inflow in August/September 2002 the deep water flow spreads along the southwestern slope of the Gdansk Basin. Further, the model results show that the patterns of mean vertical advective fluxes across the halocline that close the large-scale vertical circulation are rather patchy. Mainly within distinct areas are particles of the saline inflow water advected vertically from the deep water into the surface layer. To analyze the time scales of the circulation mean ages of various water masses are calculated. It is found that at the sea surface of the Bornholm Basin, Gotland Basin, Bothnian Sea, and Bothnian Bay the mean ages associated to inflowing water from Kattegat amount to 26–30, 28–34, 34–38, and 38–42 years, respectively. Largest mean sea surface ages of more than 30 years associated to the freshwater of the rivers are found in the central Gotland Basin and Belt Sea. At the bottom the mean ages are largest in the western Gotland Basin and amount to more than 36 years. In the Baltic proper vertical gradients of ages associated to the freshwater inflow are smaller than in the case of inflowing saltwater from Kattegat indicating an efficient recirculation of freshwater in the Baltic Sea.  相似文献   

8.
A hybrid coordinate ocean model for shelf sea simulation   总被引:1,自引:0,他引:1  
The general circulation in the North Sea and Skagerrak is simulated using the hybrid coordinate ocean model (HYCOM). Although HYCOM was originally developed for simulations of the open ocean, it has a design which should make it applicable also for coastal and shallow shelf seas. Thus, the objective of this study has been to examine the skills of the present version of HYCOM in a coastal shelf application, and to identify the areas where HYCOM needs to be further developed. To demonstrate the capability of the vertical coordinate in HYCOM, three experiments with different configurations of the vertical coordinate were carried out. In general, the results from these experiments compares quite well with in situ and satellite data, and the water masses and the general circulation in the North Sea and Skagerrak is reproduced in the simulations. Differences between the three experiments are small compared to other errors, which are related to a combined effect of model setup and properties of the vertical mixing scheme. Hence, it is difficult to quantify which vertical coordinate configuration works best for the coastal region. It is concluded that HYCOM can be used for simulations of coastal and shelf seas, and further suggestions for improving the model results are given. Since HYCOM also works well in open ocean and basin scale simulations, it may allow for a realistic modelling of the transition region between the open ocean and coastal shelf seas.  相似文献   

9.
Based on the theoretical spectral model of inertial internal wave breaking(fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model(OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes(including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme(F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al.( T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM(LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation(AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.  相似文献   

10.
潮致混合对海洋环流的调整起着重要作用。陆架环流的数值模拟中如果不考虑潮汐作用,往往不能得到与观测相符的垂向温盐结构。本文基于调和分析方法,建立了一套潮致混合参数化方案。该方案通过对垂向混合系数进行调和分析,从而得到随时间变化的潮致混合系数。将该方案用于黄海冷水团数值模拟的结果显示,其能够得到与在数值模式开边界直接加入潮汐强迫相当的冷水团温盐结构。和直接引入潮汐强迫相比,这一潮致混合参数化方案的优势在于,它能够大大节省数值模拟计算机时,因此有望显著提高大规模高分辨率的海洋环流及气候模式的模拟能力和计算效率。  相似文献   

11.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

12.
Changes in the ventilation rate of the global ocean during the 20th and 21st centuries, as indicated by changes in the distribution of ideal age, are examined in a series of integrations of the Community Climate System Model version 3. The global mean age changes little in the 20th Century relative to pre-industrial conditions, but increases in the 21st Century, by an amount that is independent of the range of climate forcings considered. The increase is primarily due to a decrease in the ventilation rate of Antarctic Bottom Water (AABW), and to a lesser degree, North Atlantic Deep Water (NADW). Changes in a regional volumetric census of age indicate that the changes in AABW are predominantly for waters that are already older than 100 years, so will likely have a moderate direct feedback on oceanic uptake of CO2 and other tracers. On the other hand, the changes in NADW occur most strongly in waters that are a few decades old, so are more likely to have a feedback on the climate system. While the global mean age increases, the age does not increase everywhere in the ocean. Regions newly exposed to strong atmospheric forcing as sea ice retreats experience an increase in convection and decreasing age. Age also decreases over a large volume of the lower thermocline as the rate of upwelling of old deep water decreases with the weakening of the thermohaline circulation.  相似文献   

13.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   

14.
After reviewing the inverse method, we apply it to deducing the general circulation of the North Atlantic ocean. We argue that the method is purely classical in nature, being nothing more than a mathematical statement of the principles upon which nearly all previous circulation schemes have been based. The ‘smoothed’ solution is shown to represent the components of the flow field that are determinable independently of the initial reference level. We then produce two circulation schemes based upon two different initial reference levels — 2000 decibars and the bottom — called North Atlantic-1A and North Atlantic-1B respectively. The models share many features in common and are strikingly similar to several previous schemes, most notably those of Jacobsen and Defant in the region west of Bermuda. No simple level-of-no-motion emerges in the flow fields; rather the velocity sections exhibit a complex cellular structure. Zonally integrated meridional cells of models and of the uniquely determined components are very similar, showing a poleward movement of warm saline water compensated at depth by a return flow of cold, fresher water. The magnitudes of the implied polar sea overflows and the heat fluxes are in good agreement with previous estimates. Finally, it is argued that neither these model circulations nor any other circulation pattern based upon the existing data can be regarded as actually representing the true time average ocean circulation because the data are aliased in time; the frequency/wavenumber spectrum of the ocean is inadequately known to determine the resulting errors.  相似文献   

15.
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C -unstructured non-orthogonal grid in the horizontal direction and z -level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohai Sea. The results are in good agreement both with the analytical solutions and measurement results.  相似文献   

16.
Within the European DIADEM project, a data assimilation system for coupled ocean circulation and marine ecosystem models has been implemented for the North Atlantic and the Nordic Seas. One objective of this project is to demonstrate the relevance of sophisticated methods to assimilate satellite data such as altimetry, surface temperature and ocean color, into realistic ocean models. In this paper, the singular evolutive extended Kalman (SEEK) filter, which is an advanced assimilation scheme where three-dimensional, multivariate error statistics are taken into account, is used to assimilate ocean color data into the biological component of the coupled system. The marine ecosystem model, derived from the FDM model [J. Mar. Res. 48 (1990) 591], includes 11 nitrogen and carbon compartments and describes the synthesis of organic matter in the euphotic zone, its consumption by animals of upper trophic levels, and the recycling of detritic material in the deep ocean. The circulation model coupled to the ecosystem is the Miami isopycnic coordinate ocean model (MICOM), which covers the Atlantic and the Arctic Oceans with an enhanced resolution in the North Atlantic basin. The model is forced with realistic ECMWF ocean/atmosphere fluxes, which permits to resolve the seasonal variability of the circulation and mixed layer properties. In the twin assimimation experiments reported here, the predictions of the coupled model are corrected every 10 days using pseudo-measurements of surface phytoplankton as a substitute to chlorophyll concentrations measured from space. The diagnostics of these experiments indicate that the assimilation is feasible with a reduced-order Kalman filter of small rank (of order 10) as long as a sufficiently good identification of the error structure is available. In addition, the control of non-observed quantities such as zooplankton and nitrate concentrations is made possible, owing to the multivariate nature of the analysis scheme. However, a too severe truncation of the error sub-space downgrades the propagation of surface information below the mixed layer. The reduction of the actual state vector to the surface layers is therefore investigated to improve the estimation process in the perspective of sea-viewing wide field-of-view sensor (SeaWiFS) data assimilation experiments.  相似文献   

17.
A method allowing the calculation of both concentration and age of an individual water component is used to examine the penetration and fate of North Atlantic Deep Water (NADW) in a global ocean model. The method is consistent with the recent theory of water component age by Delhez et al. Its application in ocean models is straightforward and involves specification of two ideal tracers, and its efficacy is verified here via comparison with water component ages obtained by a second method, involving the time history of a single ideal tracer, and whose application is rather more restricted. Age estimates by the two methods are compared in the case of an interior ocean source region (suitable for marking the model's NADW, and forming the main focus of the study) and in the case of a ocean surface source region (featuring high density surface water in the far Northern Atlantic). The concentration and age of NADW are determined for two versions of the model, differing only in the inclusion or exclusion of isoneutral diffusion. The age and, especially, the concentration of NADW in the deep Southern, Indian and Pacific Oceans are significantly lower in the version with isoneutral diffusion. Both versions indicate that most of the NADW ultimately reaches the surface in the model Southern Ocean.  相似文献   

18.
Research and development in ocean engineering, particularly in the areas of deep ocean drilling and platform construction, have progressed remarkably in the past few decades. By and large, instrumentation for biological ocean research, in comparison, remains simplistic. A brief review of marine biological sampling devices is provided, indicating the relative inadequacies of marine bio-instrumentation. Equipment for plankton, benthos, and nekton sampling has been improved in recent years compared to that available for nannoplankton. Nevertheless, there are limitations even in the best of these devices, and improvements in sampling gear would benefit ocean biology significantly. Precise sample collection of surface slicks, water column, and ocean sediment is mandatory for biological assessment of environmental impact. The necessary sampling gear is either not available or under development and, in cases where the instrumentation is available, it is, in general, either limited in application or not entirely reliable. As an example, increasingly, the ocean serves as the receptor of discharge from sewage outfalls, deep water disposal, and ocean dumping. Thus assessment of biological impact is required, particularly in light of the increasing frequency of reports of survival of bacteria and viruses pathogenic for man in those regions of the world oceans significantly affected by these activities. Improved instrumentation for aseptic sample collection and retrieval of water, sediment, and biota for quantitative, as well as qualitative, microbiological analyses are needed. Developments in baromicrobiology have been rapid, but improved instrumentation is needed. Even though aseptic collection of deep ocean water samples is possible, sediment sample collection for microbiology is still accomplished by coring or grab devices, with no instrument yet available for quantitative undisturbed sample collection without contamination from water column microorganisms.  相似文献   

19.
A physical formulation of the problem is considered. A mathematical model and a numerical algorithm of the turbulence model as part of the ocean circulation model for simulations for decades are formulated. The model is based on the evolution equations for turbulent kinetic energy (TKE) and the frequency of its viscous dissipation. A numerical solution algorithm for both the circulation model and the turbulence model is based on implicit schemes of splitting with respect to physical processes and geometric coordinates. For the turbulence model, this provided analytical solutions at a splitting step related to TKE generation and dissipation. Numerical experiments have been performed with a model of the joint circulation of the North Atlantic, the Arctic Ocean, and the Bering Sea to reproduce the annual cycle and synoptic disturbances of ocean characteristics. The model has a resolution of 0.25° in latitude and longitude and 40 levels in the vertical, which are compressed toward the surface to reproduce the process of developed turbulence better. The results are compared with observations and with the results of simulations using traditional parameterizations of the upper ocean mixing. It is shown that the model reproduces ocean characteristics correctly, only slightly increasing the computation time in comparison with simple parameterizations. Spatial and temporal characteristics of turbulence are analyzed.  相似文献   

20.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号