首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   6篇
海洋学   9篇
综合类   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
研究多重物理过程控制下陆架边缘海生物地球化学过程的时空异质性及其生态响应,对于深入认识海洋生态系统具有重要的意义。基于相关历史观测资料和卫星遥感海表温度,本文综合分析了南黄海物理-生物地球化学过程的时空变化和空间异质性特征,探讨了该海域内部典型地理单元之间的内在关联和机制。结果显示,冷季沿岸流南向输送和暖季锋面上升流垂向输运的季节性交替是影响石岛外海与海州湾外侧海域生物地球化学和初级生产的重要物理过程。夏季苏北沿岸水的东北向扩展可形成浒苔离岸/跨区域输送的动力驱动。暖季水体层化显著影响着南黄海中部冷水团海域的生物地球化学过程,春至秋季冷水团海域底层水体中的营养盐逐渐累积,形成了营养盐的重要贮库;层化季节黄海冷水团边界锋区上升流系统的存在使得南黄海叶绿素a和初级生产力高值区位置同海表低温涌升流区总体相一致。冷季南黄海西部南下的冷水与中部北向入侵的暖水共同导致了“S”型锋面的形成;暖季黄海冷水团边界锋区的上升流系统是连接层化海域和近岸区的纽带,可实现对冷水团内部营养盐的提取,从而将冷水团内部和边界区的生物地球化学过程形成有机连接,并在成山角-石岛外海、海州湾外侧、苏北浅滩东部形成三个典型的物理-生物地球化学相互作用区。本研究细化和整合了南黄海区域海洋学研究,揭示了该海域物理-生物地球化学过程的空间异质性特征和不同地理单元之间的关联性及机制,获得了对南黄海水文-生物地球化学-生态过程的综合、系统认知。  相似文献   
2.
近些年来,夏季黄海浒苔大规模暴发,并在青岛近岸海域大面积聚集,引起了广泛的关注。本文基于在夏季和冬季所获得的多学科调查资料,重点研究了青岛近海的水文-生物地球化学过程及其生态影响,阐明了该海域物理-化学-生物等多参数之间的耦合响应。研究显示,夏季黄海冷水团的边界可扩展至青岛近岸海域,并在局部涌升至上层水体,形成沿岸上升流;该上升流可对上层营养盐产生一定的补充,进而促进浮游植物的繁殖,并于底层海域对应形成溶解氧(DO)和pH的低值。夏季青岛近海的上升流可能还有利于随南风漂移至此的浒苔的生长,并在一定程度上引起浒苔的局地旺发;同时,夏季该海域特定的锋面系统对浒苔聚集的影响也不容忽视。冬季黄海暖流在苏北浅滩外侧向山东半岛南部海域延伸,扩展至青岛近海的暖水舌与近岸低温水之间的锋面特征明显,而且在向岸暖水与近岸冷水间还对应形成了明显的营养盐和叶绿素(Chl-a)锋面。该项研究从多学科交叉的视角,增进了对青岛近海物理、化学和生物过程之间耦合关系的认识。  相似文献   
3.
渤海沿岸流季节变化对青岛冷水团影响的初步分析   总被引:2,自引:0,他引:2       下载免费PDF全文
青岛冷水团位于青岛外海海域,具有独特的温盐结构和生消规律,对近海水文和周围渔场有重要的影响。利用世界海洋数据库(WOD2013)和中国科学院海洋研究所开放航次的黄海断面观测资料,及ROMS区域海洋模式,对青岛冷水团的形成机制和演化过程进行了研究。结果表明,青岛冷水团3月初现,4月形成,5月达到鼎盛,6、7月逐渐与黄海冷水团融合,8月开始衰减至10月消亡。渤海沿岸流秋冬季为北风驱动的正压流,其携带的山东半岛北岸的低温水为青岛冷水团的形成提供水源;春夏季为冷水团密度环流,输运到青岛冷水团和黄海西侧冷水团之间的低温水促进了两水团的融合,加快青岛冷水团的消亡。  相似文献   
4.
卡里马塔海峡贯穿流将中国南海的低盐水输运到爪哇海,与印度尼西亚贯穿流(印尼贯穿流)携带的西太平洋高盐水在印度尼西亚海(印尼海)交汇,二者通过混合、浮力强迫等过程相互作用。这改变了印度尼西亚海的水体热盐性质,影响局地海气交换和热带太平洋-印度洋之间的热盐交换。依据卡里马塔海峡、龙目海峡和望加锡海峡的实测表层海流数据,采用被动示踪法和数值模拟诊断实验,分析并研究了2支海流在季节尺度上的相关关系及其相互作用。观测结果表明,卡里马塔海峡贯穿流与印尼贯穿流的表层流季节变化存在负相关,且超前1个月达到相关系数最大值,其中印尼贯穿流下游的龙目海峡表层流与卡里马塔海峡贯穿流关系更密切。被动示踪结果显示,卡里马塔海峡释放的示踪粒子主要向南流入爪哇海,然后经巽他海峡、龙目海峡及班达海方向流出,但很难进入到望加锡海峡北部;望加锡海峡释放的表层示踪粒子主要经龙目海峡和班达海流入印度洋,但无法进入到爪哇海及卡里马塔海峡。数值诊断实验结果表明,卡里马塔海峡贯穿流在冬季阻挡了印尼贯穿流表层海水的南下,从而使其表层流产生明显的季节变化;而望加锡海峡贯穿流对卡里马塔海峡贯穿流的影响较小。在季节尺度上,卡里马塔海峡贯穿流对印尼贯穿流尤其是表层流,有着重要影响,但印尼贯穿流对卡里马塔海峡贯穿流的影响较小。  相似文献   
5.
近几年,海上危化品泄漏事故频发,对海洋生态环境造成了严重影响,而有关海上危化品漂移扩散数值模拟的研究还处于起步阶段。本文依据危险化学品的理化性质及其泄漏进入海水后的扩散行为的不同,将目前常见的海运危险化学品划分为4大类:海面漂移型、溶解扩散型、悬浮输移型和易挥发型。在此分类的基础上,总结归纳了国内外现有的适用于海上危化品漂移扩散的数值模型,对于未来海上危化品泄漏扩散快速预报、精细化预报模型的建立以及危化品泄漏的应急处置具有一定的参考价值。  相似文献   
6.
本文主要介绍了南海及邻近海域大气-海浪-海洋耦合精细化数值预报系统的研制概况。预报区域为99°E~135°E,15°S~45°N,包括渤海、黄海、东海和南海及其周边海域。为了给耦合预报模式提供较准确的预报初始场,在预报开始之前,分别进行了海浪模式和海洋模式的前24小时同化后报模拟。海浪模式和海洋模式都采用了集合调整Kalman滤波同化方法,海浪模式同化了Jason-2有效波高数据;海洋模式同化了SST数据、MADT数据和ARGO剖面数据。为了改进海洋温度和盐度的模拟,我们在海洋模式的垂向混合方案中引入波致混合和内波致混合的作用。预报系统的运行主要包括两个阶段,首先海浪模式和海洋模式进行了2014年1月至2015年10月底的同化后报模拟,强迫场源自欧洲气象中心的六小时的再分析数据产品。然后耦合预报系统将同化后报模拟的结果作为初始场进行了14个月的耦合预报。预报产品包括大气产品(气温、风速风向、气压等)、海浪产品(有效波高和波向等)、海流产品(温度、盐度和海流等)。一系列观测资料的检验比较表明该大气-海浪-海洋耦合精细化数值预报系统的预报结果较为可靠,可以为南海及周边海洋资源开发和安全保障提供数据和信息产品服务。  相似文献   
7.
潮致混合对海洋环流的调整起着重要作用。陆架环流的数值模拟中如果不考虑潮汐作用,往往不能得到与观测相符的垂向温盐结构。本文基于调和分析方法,建立了一套潮致混合参数化方案。该方案通过对垂向混合系数进行调和分析,从而得到随时间变化的潮致混合系数。将该方案用于黄海冷水团数值模拟的结果显示,其能够得到与在数值模式开边界直接加入潮汐强迫相当的冷水团温盐结构。和直接引入潮汐强迫相比,这一潮致混合参数化方案的优势在于,它能够大大节省数值模拟计算机时,因此有望显著提高大规模高分辨率的海洋环流及气候模式的模拟能力和计算效率。  相似文献   
8.
On the basis of the latest version of a U.S. Navy generalized digital environment model(GDEM-V3.0) and World Ocean Atlas(WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that:(1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea(SCS);(2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness;(3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability;(4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait.Moreover, the deepwater overflow reaches its seasonal maximum in December(based on GDEM-V3.0) or in fall(October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest(3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.  相似文献   
9.
A winter onshore warm tongue extending from the Yellow Sea Warm Current to the southern Jiangsu coast, and an of fshore cold tongue extending from the southern Jiangsu coast to the southwest of Jeju Island(South Korea), are newly identified based on the sea-surface temperature from satellite remote sensing, and further confirmed by the distribution of suspended sediments. In addition, there are two obvious thermal fronts associated with the onshore warm tongue and off shore cold tongue. The narrow gap between the two thermal fronts is supposed to be the pathway for the off shore transport of cold coastal water and suspended sediments. The concurrence of onshore warm and of fshore cold tongues suggests the concurrence of onshore and off shore currents in the western Yellow Sea in winter, which seems to be inconsistent with the previously accepted view that, in winter, the Yellow Sea Coastal Current flows from the Old Huanghe Delta to the southwest of Jeju Island. This distinctive phenomenon helps establish an updated view of the circulation in the western Yellow Sea in winter.  相似文献   
10.
本研究利用渤海、黄海、东海及周边区域21个GPS站的调和常数资料,对5个全球垂向位移负荷潮模式(FES2014、EOT11a、GOT4.10c、GOT4.8和NAO.99b)在渤海、黄海、东海及周边区域的准确度进行了评估。结果表明,在渤海、黄海、东海及周边区域,对于M2分潮,FES2014和EOT11a模式结果准确度相对较高;对于S2分潮,NAO.99b和EOT11a模式结果准确度相对较高;对于K1分潮,EOT11a和FES2014模式结果准确度相对较高;对于O1分潮,EOT11a和GOT4.8模式结果准确度相对较高;对于N2分潮,EOT11a和FES2014模式结果准确度相对较高;对于K2分潮,NAO.99b和FES2014模式结果准确度相对较高;对于P1分潮,EOT11a和GOT4.8模式结果准确度相对较高;对于Q1分潮,FES2014和EOT11a模式结果准确度相对较高。除此之外,本文还简单分析了渤海、黄海、东海及周边区域8个主要分潮的垂向位移负荷潮分布特征。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号