首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H el 0 (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: ?5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), ?5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 0.1 3+ )[Si3.9Al0.1O10](OH)2 (II), ?5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 0.1 3+ ) [Si3.7Al0.3O10](OH)2 (III), and ?6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.  相似文献   

2.
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 0.5 2+ Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 1.9 2+ Fe 0.2 3+ )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 1.6 2+ Fe 0.2 3+ )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 1.8 2+ Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 1.3 3+ Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 1.3 2+ Fe 0.9 3+ Al0.2) [Si6.4Al1.6O22](OH)2 (?10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.  相似文献   

3.
The thermochemical study of two natural trioctahedral Mg–Fe chlorites—clinochlores was carried out using high-temperature melt solution calorimetry with a Tian–Calvet microcalorimeter. The enthalpies of formation of clinochlores of compositions (Mg4.9Fe 0.3 2+ Al0.8)[Si3.2Al0.8O10](OH)8 (–8811 ± 12 kJ/mol) and (Mg4.3Fe 0.7 2+ Al1.0)[Si3.0Al1.0O10](OH)8 (–8696 ± 13 kJ/mol) from elements were determined. The values of the standard entropies and the Gibbs energies of formation of the studied natural minerals as well as thermodynamic properties of Mg–Fe chlorites of theoretical composition were estimated.  相似文献   

4.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

5.
A new coexisting amphibole pair was recently found in the Jianshan iron deposit, Loufan of Shanxi Province, China. Electron microprobe analysis shows that the coexisting pair is composed of grünerite K0.001 (Na0.027 Ca0.073 Mn0.031 Fe 1.801 2+ )1.932 (Fe 2.948 2+ Mg1.964 Ti0.002 Al0.087)5Si8.069 O22.10(OH)2 and ferropargasite (K0.135 Na0.461)0.596 (Na0.088 Ca1.853 Mn0.005 Fe 0.072 2+ )2(Mn0.005Fe 2.789 2+ Mg0.875Ti0.021Fe 0.499 3+ Al0.812)5(Si6.103Al1.897)8O22.00(OH)2. The two kinds of amphiboles occur in amphibole schist not only as separate phenocrysts, but also are combined to form “single-crystal” phenocrysts in the form of topotactic intergrowths with the common c- and b-axes. The boundary between topotactic grünerite and ferropargasite is optically and chemically sharp. In comparison with the coexisting ferromagnesian amphibole and calcic amphibole pair discovered by predecessors, the newly discovered pair has lower Mg/Fe ratios and wider miscibility gaps.  相似文献   

6.
The mixed valence iron silicate deerite, Fe 6 2+ Fe 3 3+ O3[Si6O17](OH)5 whose crystal structure has only recently been fully determined, had been previously examined by both susceptibility measurements and Mössbauer spectroscopy. We reinterpret the Mössbauer measurements from Frank and Bunbury and show that all contradictions between the phenomena, observed in their experiments, and the mineralogical structure disappear when one accepts a thermally activated electron delocalisation associated with Fe2+ ? Fe3+ charge transfer.  相似文献   

7.
Kinetic studies of isothermal heating experiments (600–800° C) on aluminous pyroxenes (Mg0.942Fe 0.880 2+ Fe 0.068 3+ Mn0.016Ca0.010Al0.084) (Si1.848Al0.152) permit the determination of rate constant of isothermal disordering as 2.5457 E13(±1.4 E13) min?1. The activation energy is determined as 278 (±23) kJ/mol. Data on two other aluminous pyroxenes at 700° C indicate that the rate constant decreases significantly with increasing amount of trivalent cations. There is a similar but reverse correlation between the concentration of trivalent cations and the Fe2+-Mg equilibrium distribution between sites. The site distribution coefficient increases with increasing concentration of trivalent cations at constant temperature.  相似文献   

8.
The paper reports data obtained in the course of a comprehensive physicochemical study of Li-tosudite, a mixed-layer mineral from hydrothermally altered rocks in western Chukotka, Russia, whose formula was reliably established. The enthalpy of formation of Li-tosudite from Chukotka, Ca0.15(Li0.9Mg0.2Al6.0)[Si6.4Al1.6O20](OH)10 · 3.3H2O, from elements was experimentally determined by melt solution calorimetry in a high-temperature Calvet microcalorimeter: ΔfH el o (298.15 К) =–15087 ± 26 kJ/mol. The standard entropy and Gibbs free energy of formation of this mineral were evaluated.  相似文献   

9.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

10.
11.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

12.
Sapphirine II     
The crystal structure of aP21/a polymorph of sapphirine (a=11.286(3),b=14.438(2),c=9.957(2) Å, β=125.4(2) °) of composition [Mg3.7Fe 0.1 2+ Al4.1- Fe 0.1 3+ ]IV[Si1.8Al4.2]IVO20 was refined using structure factors determined by both neutron and x-ray diffraction methods to conventionalR factors of 0.067 and 0.031. respectively, forF obs>2σ. The results of the two refinements agree reasonably well, but a half-normal probability plot (Abrahams, 1974) comparing the two data sets indicates that the pooled standard deviations of the atomic coordinates have been underestimated by a factor of two. The structure of sapphirine, solved initially by Moore (1969), consists of cubic closest packed oxygens with octahedral and predominantly tetrahedral layers alternately stacked along [100]. The layer in which 70% of the octahedral sites are occupied has an Mg-Al distribution characterized by Mg-rich octahedra sharing edges mainly with Al-rich octahedra. Mean octahedral bond lengths correlate well with Al occupancy determined by neutron site refinement if the relative number of shared octahedral edges is taken into account (see Table 1). The predominantly tetrahedral layer has 10% of the octahedral sites occupied by Al and 30% of the tetrahedral sites occupied by Al-Si in the ratio 2.33∶1. There are single chains of Al-Si tetrahedra parallel toz with corner-sharing wing tetrahedra (T5 andT6) on either side in the (100) plane. The meanT-O distance is highly correlated with Al occupancy, XAl, as determined from the neutron site refinement: $$\langle T - O\rangle = 1.656 + 0.105X_{Al} (r^2 = 0.995).$$ Details of the neutron refinement are summarized below.  相似文献   

13.
A new Cu-rich variety of lyonsite has been found from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia). The empirical formula is Cu4.33Fe 2.37 3+ Ti0.26Al0.26Zn0.07(V5.85As0.07Mo0.07P0.01S0.01)O24. The crystal structure was studied on single crystal using synchrotron radiation, R = 0.0514. The mineral is orthorhombic, Pnma, a = 5.1736(7), b =10.8929(12), c = 18.220(2) Å, V = 1026.8(2) Å3, and Z = 2. The structural formula is (Cu0.6Ti0.3Al0.3Fe 0.2 3+ 0.6)Σ2Cu2(Fe 2.2 3+ Cu1.8)Σ4(V5.8As0.1Mo0.1)Σ6O24. It is proposed to recast the simplified formula of lyonsite as Cu3+x (Fe 4?2x 3+ Cu2x )(VO4)6, where 0 ≤ x ≤ 1.  相似文献   

14.
Far from equilibrium, quasi-steady state dissolution rates of an iron rich chlorite (Mg2.76Fe2+1.90Fe3+0.07Al0.97)[Si2.48Al1.52O10](OH)8, have been measured as a function of H+ concentration for the pH range 3 to 10.5 and at 25°C. The rates were determined using a single pass flow through cell and with a time frame for observing the steady state condition of between 10 to 50 days. Rates are independent of the buffers used to control the pH, sample preparation, experimental methodology and chlorite composition. The results were collated with literature values allowing the rate to be expressed as a function of H+ as;
  相似文献   

15.
Laihuite reported in the present paper is a new iron silicate mineral found in China with the following characteristics:
  1. This mineral occurs in a metamorphic iron deposit, associated with fayalite, hypersthene, quartz, magnetitc, etc.
  2. The mineral is opaque, black in colour, thickly tabular in shape with luster metallic to sub-metallic, two perfect cleavages and specific gravity of 3.92.
  3. Its main chemical components are Fe and Si with Fe3+>Fe2+. The analysis gave the formula of Fe Fe 1.00 3+ ·Fe 0.58 2+ ·Mg 0.03 2+ ·Si0.96O4.
  4. Its DTA curve shows an exothermic peak at 713°C.
  5. The mineral has its own infrared spectrum distinctive from that of other minerals.
  6. This mineral is of orthorhombic system; space group:C 2h /5 ?P21/c; unit cell:α=5.813ű0.005,b=4.812ű0.005,c=10.211ű0.005,β=90.87°.
  7. The Mössbauer spectrum of this mineral is given, too.
  相似文献   

16.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

17.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

18.
Violet, non-pleochroic and greenish-blue, pleochroic chromium-substituted sapphirines were found in corundum-bearing spinel-websterite xenolites from the Yakutian kimberlite pipes Noyabrskaya (N) and Sludyanka (Sl), respectively. The crystallochemical formulae of sapphirine crystals from such xenolites were determined by EMP to be (Mg3.40Fe0.23Al3.25Cr0.16)[6] Al 1.00 [6] [O2/Al4.53Si1.47O18] (N) and (Mg2.53Fe0.55 Mn0.04Ti 0.03 4+ Al3.55Cr 0.08 3+ )[6]Al 1.00 [16] [O2/Al4.28Si1.73O18] (Sl). Single crystal spectra in the range 35000–6000 cm1- showed a slightly polarization dependent absorption edge near 3200 cm1- (N) or 30000 cm1- (Sl) and unpolarized bands at 25300 and 17300 cm1-, typical of spin-allowed transitions, derived from 4A2g4T1g and 4A2g4T2g, of Cr3+ in octahedral sites, with point symmetry C1, of the structure. Another weak band at 23000 cm?1 in the sapphirine-N spectra is attributed to low symmetry splitting of the excited 4T1 (F)-State of Cr3+. These assignments lead to crystal field parameters Dq=1730cm?1 and B= 685cm?1 of Cr3+ in sapphirine. Crystallochemical and spectroscopic arguments suggest that Cr3+ subsitutes for Al in the M(1) or M(8) sites of the sapphirine structure. In addition to Cr3+-transitions, spectra of Sl exhibit weak dd-bands of Fe2+ at 10000 and 7700 cm1-, which are unpolarized in consistency with the C1 site symmetry of the octahedra in the structure. Spectra of Sl show also prominent, broad bands (Δv1/2~-5000 cm1-) at 15000 and 11000 cm1-, which occur in E//Y(//b) and E//Z(//c=12°) only and exhibit an intensity ratio αY∶αz close to 1∶3. This result, the large half width, as well as band energy — MM distance considerations suggest that these bands originate from Fe2+[6]-Fe3+[6] charge-transfer transitions in wall octahedra M(1)M(2), M(6)M(7) etc., forming MM vectors of 30° with the c-axis. The lack of Fe2+-Fe3+ charge-transfer bands in sapphirine N might indicate a lower oxygen fugacity during the formation of the websterite from the Noyabrskaya pipe compared to that from the Sludyanka pipe.  相似文献   

19.
This paper presents the point-defect thermodynamics for fayalite and olivine solid solutions (Fe x Mg1?x )2SiO4. By means of thermogravimetry, the metal-to-oxygen ratio of these silicates has been determined as a function of oxygen potential, compositionx and temperature. Experiments were performed in the range of 1,000° C≦T≦1,280° C and 0.2≦x≦1.0. It is found that V Me , Fe Me · and the associate {Fe′ Si Fe Me · } are the majority defects. With this knowledge it is possible to calculate the nonstoichiometry at given temperature as a function of \(p_{O_2 } \) and \(a_{SiO_2 } \) . The cation vacancy concentration shows a \(p_{O_2 }^{1/5} \) -dependence (forx≧0.2) and increases at givenT and \(p_{O_2 } \) almost exponentially with compositionx. In the composition range studied here, the silicates show an oxygen excess, and FeO is more soluble in the olivine than SiO2.  相似文献   

20.
The electron paramagnetic resonance (EPR) spectra of Fe3+ in a well cristallized kaolinite from Decazeville in France are well resolved. It is shown that in this sample there are mainly two slightly different spectra, well separated at low temperature and characterized at -150° C by the constants B 2 0 = 0.112 cm?1, B 2 2 = 0.0688 cm?1 for one and B 2 0 = 0.116 cm?1, B 2 2 = 0.0766 cm?1 for the second. These two spectra arise from Fe3+ substituted for Al3+ at the two octahedral positions in equal amounts. The temperature dependence of EPR spectra was studied and was explained by a modification of the octahedral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号