首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The project area lies in the southern part of the Hazara Kashmir syntaxis. The Hazara Kashmir syntaxis is an antiformal structure. The project area includes Rumbli, Namb, Chatrora, Chachan, Panjar, Barathian and Utrinna areas of Rawalpindi and Sudhnoti districts. The southeastern limb of the Hazara Kashmir syntaxis is imbricated along Punjal thrust, Main Boundary thrust and Riasi fault. The Jhelum fault truncates the western limb of Hazara Kashmir syntaxis. The core of syntaxis comprises of Himalayan molasse deposits. These molasse deposits represent the part of cover sequence of Indian plate. These Himalayan molasse deposits include the Early to Middle Miocene Kamlial Formation, Middle to Late Miocene Chinji Formation, Late Miocene Nagri Formation and Late Miocene Dhok Pathan Formation. The area is highly deformed resulting folds and faults. The major folds in the project area are the Panjar anticline, Barathian syncline, Barathian anticline, Rumbli anticline, Chatrora antiformal syncline and Namb syncline. The folds are either northwest-southeast trending or southwestnortheast trending. The folds are asymmetric, open, and gentle and close in nature. The folds are southwest, northeast or southeast vergent. The Jhelum fault truncates the northeast and northwest trending structures. The folds and faults are the result of northeastsouthwest or northwest-southeast Himalayan compression.  相似文献   

2.
Based on our detailed structural characterization, we examine possible relationships between thrust faults and strike-slip faults and thrust-cored folds and depositional units in the Silla Syncline, a 4 km wide fold composed of fine-grained mudstone, coarse sandstone and conglomerate deposits of the Cerro Toro Formation in the Magallanes foreland basin, Chilean Patagonia. The syncline is bounded on its western flank by an asymmetric anticline and on its eastern flank by a broad zone of thrust faults and associated folds, which are oriented sub-parallel to the syncline axis. Deposition of the coarse-grained units of the Silla Syncline appears to have taken place in this structurally defined trough controlled primarily by thrust fault related growth structures flanking the syncline.The syncline and surrounding area have also been deformed by two sets of strike-slip faults, one right-lateral and one left-lateral. The strike-slip and thrust faulting operated contemporaneously for much of their active periods, although it appears that thrust faulting, confined within the fine-grained units, initiated slightly earlier than strike-slip faulting. In addition, younger igneous intrusions at high angle to bedding generally localize along the strike-slip faults. The cross-cutting relationships among the intrusions, strike-slip faults, and flexural slip faults show that all these structures were active during the same period, which extends beyond mid-Miocene.These conclusions support the premise that structures in deep-water sediments are important for understanding not only the deformation of a foreland basin, but also its depositional architecture.  相似文献   

3.
根据高陂煤矿区主要断层的走向、形成期次、平面展布样式和发育特征,分析了该区应力状态及矿区构造演化过程。研究表明:在矿区北东、南西向局部主压应力作用下,产生了南部一系列逆冲断层和褶曲,同时在这种压应力持续作用下,又产生了与局部主压应力几乎垂直的北西、南东向的张应力,从而进一步产生了低序次的北东—南西向张断裂;该区在印支晚期主要形成了3条滑覆断层,燕山早期形成了高陂向斜、矿区东西边界断层、次一级褶曲和小断层;燕山中、晚期形成了矿区南北边界断层,并使高陂向斜南高北低。   相似文献   

4.
燕山板内造山带中部承德盆地复杂的中生代褶皱及逆冲断裂构造,曾被解释为土城子组沉积之后大型逆冲推覆构造(位移量大于40~45km)又经褶皱变形的结果。近年来,土城子组沉积相和物源区分析、中新元古界沉积古地理研究以及相关构造变形研究结果等,对这一变形大型逆冲构造模型提出了多方位质疑。但已有研究并未提出新的构造模型来解释这一复杂构造区域中生代构造变形样式和形成机制。文中通过对承德盆地区域主体构造——承德向斜、向斜两翼逆冲构造变形几何学与运动学特征、向斜转折端附近构造变形与断裂发育状况进行详细野外调查及对关键地质体同位素地质年代进行测试,发现承德向斜两翼逆冲断层为分别向向斜核部以外区域逆冲的独立逆冲断层,逆冲断层活动与承德向斜变形是在统一的收缩变形体制下准同时形成的。它们形成于土城子组之后、张家口组火山活动之前,即距今约139~136 Ma。据此提出了"承德逆冲构造"的背离向斜逆冲构造模型。这一模型合理地解释了燕山中部承德盆地区域中生代构造变形和相应的盆地充填特征,同时表明,燕山板内造山带并不存在碰撞造山带前陆褶皱逆冲带中常见的大型薄皮逆冲构造样式。这一研究结果展示了褶皱相关断裂构造模型在研究和揭示收缩构造变形区域大尺度褶皱与断裂构造相互关系及准确重建区域构造演化过程方面的重要意义。  相似文献   

5.
早中生代(晚印支-早燕山期)岳阳-赤壁断褶带位于江南造山带与中扬子前陆盆地交界地带.作者对该构造带进行了地表地质调查,以此为基础探讨了构造剖面结构及构造变形动力机制.岳阳-赤壁断褶带自南而北可分为岳阳-临湘基底滑脱-逆冲带,桃花泉-肖家湾盖层滑脱褶皱带,以及赤壁-嘉鱼前陆盆地断-褶-盆构造带.岳阳-临湘基底滑脱-逆冲带自南而北依次有郭镇向斜、官山背斜、临湘倒转向斜和聂市背斜,组成隔槽式褶皱组合.褶皱轴面多向南倾,褶皱变形面为南华系盖层与冷家溪群褶皱基底间的角度不整合面和顺界面的滑脱断裂面.桃花泉-肖家湾盖层滑脱褶皱带主要发育轴面南倾倒转褶皱,褶皱波长较小,卷入地层为南华系-志留系以及上石炭统-中三叠统沉积盖层.赤壁-嘉鱼前陆盆地断-褶-盆构造带以南倾蒲圻断裂(江南断裂)为南部边界,发育T3-J2前陆盆地沉积,带内褶皱与断裂卷入地层包括沉积盖层以及T3-J2地层:南部断裂与褶皱轴面南倾.北部轴面近直立.自南西至北东,研究区内构造线走向由EW向渐变为NEE-NE向.上述构造分带及变形特征反映出自南向北的运动指向,表明岳阳-赤壁断褶带具前陆冲断带构造性质.从断裂相关褶皱理论出发,以地表构造特征为依据,厘定了岳阳-赤壁地质剖面结构并进行了变形动力机制分析,认识如下:①自南而北、自下而上的多个滑脱层及其间的南倾逆断裂或断坡(主要为江南断裂)组成近似台阶状的逆冲断裂系统,从总体上控制了构造块体的滑移、逆冲以及相应的构造格架或变形分区.②郭镇向斜为基底滑脱褶皱,官山背斜具滑脱褶皱和断裂传播褶皱双重成因,聂市背斜为断裂转折褶皱;临湘向斜为受两侧背斜控制的被动向斜,由于弯滑褶皱作用在其两翼沿不整合界面形成滑脱断裂.③岳阳-临湘基底滑脱-逆冲带隔槽式褶皱的形成主要受控于褶皱基底的滑脱和基底整体的水平压缩,其形成机制类似于肿缩式褶皱.最后讨论认为湘东北-鄂东南地区不存在大规模、长距离的逆冲推覆构造.  相似文献   

6.
《Geodinamica Acta》2002,15(5-6):277-288
A close relationship between formation of approximately upright folds with axes normal to the extension direction and ramp/flat extensional geometries is established for well exposed Neogene syn-extensional rocks on the presently low-angle Gediz detachment fault, along the southern margin of the Gediz Graben region of western Anatolia, Turkey. Three unconformity-bounded sedimentary sequences and several metamorphic extensional allochthons were mapped in the upper-plate of the Gediz detachment. The oldest sedimentary sequence consists of deformed and folded strata of sandstones and conglomerates that are regarded as being deposited in a supra-detachment basin during the Miocene–Early Pliocene. This unit rests unconformably on the extensional allochthonous, but directly in fault contact with the lower-plate mylonitic rocks. The younger slightly tilted Late Pliocene–Pleistocene sedimentary sequences are post-detachment units that are controlled by EW-trending high-angle normal faults. The youngest alluvium comprises the undeformed present-day basin fill of the Gediz Graben. The supra-detachment sedimentary rocks contain a number of kilometric-scale longitudinal folds that are nearly parallel to the east-west-trending fault system of the Gediz Graben. The folds have a steeply inclined bisecting surface, an interlimb angle of 130–150°, and a plunge of <10°. These folds may be interpreted to form as a result of bending in the underlying Gediz detachment fault. The bending may have an alternation of ramp and flat geometries on which a hanging-wall syncline and rollover anticline formed, respectively. This study again shows the importance of local geology in understanding of some spectacular structures of the extensional basins.  相似文献   

7.
Folds in the Huasna area of the southern Coast Ranges of California provide an opportunity to study different fold forms and to estimate dimensional and relative rheological properties of rocks at the time of folding. Plunging, concentric-like and chevron-like folds with wavelengths ranging from about 0.1 to 1 km are clearly visible in natural exposures at the south end of the Huasna syncline, which has a wavelength of 12–16 km. Examination of two fresh roadcut exposures in the Miocene Monterey Formation suggests that folding within part of the Monterey was accommodated primarily by layer-parallel slip between structural layers with thicknesses ranging from 30 to 43 m, even though lithologic layers range from a few mm to a few dm in thickness. This part of the Monterey is folded into a series of concentric-like folds, with chevron-like folds at their cores and with a ratio of wavelength to total thickness of layers of about . Theoretical analysis of multilayers, comprised of identical, elastic or elastic—plastic layers with frictionless contacts, indicates that the effective, or weighted-average thickness of structural layers corresponding with an ratio of 0.42 is about 41 m. Thus, the theoretical predictions are roughly in agreement with available data concerning these folds.Thicknesses of structural units in other folds of this area are inadequately known to closely check theoretical predictions, but most of the data are consistent with predictions. An exception is the Huasna syncline which has a larger wavelength than we would predict. There are several likely explanations for this discrepancy. Layers in the underlying Franciscan complex may have taken part in the folding, making our estimates of total thickness too small. The basement rocks may have been much softer, relative to the overlying sedimentary rocks, than we assumed. The Huasna syncline could be partly a result of gravitational instability of relatively low density, Miocene siliceous and porcelaneous shales, overlain by relatively high density, Pliocene sandstones.The Huasna syncline and some of the smaller folds in the Miocene rocks are doubly in the northwest—southeast direction. Further, the maximum compression was approximately normal to the traces of the large faults in this part of California.  相似文献   

8.
Surface geology and heophysical data, supplemented by regional structural interpretations, indicate that the Valle del Cauca basin and adjacent areas in west-central Colombia form a west-vergent, basement-involved fold and thrust belt. This belt is part of a Cenozoic orogen developed along the west side of the Romeral fault system. Structural analysis and geometrical constraints show that the Mesozoic ophiolitic basement and its Cenozoic sedimentary cover are involved in a “thick-skinned” west-vergent foreland style deformation. The rocks are transported and shortened by deeply rooted thrust faults and stacked in imbricate fashion. The faults have a NE---SW regional trend, are listric in shape, developed as splay faults which are interpreted as joining a common detachment at over 10 km depth. The faults carry Paleogene sedimentary strata and Cretaceous basement rocks westward over Miocene strata of the Valle del Cauca Basin. Fold axes trend parallel or sub parallel to the thrust faults. The folds are westwardly asymmetrical with parallel to kink geometry, and are interpreted to be fault-propagation folds stacked in an imbricate thrust system. Stratigraphic evidence suggests that the Valle del Cauca basin was deformed between Oligocene and upper Miocene time. The kinematic history outlined above is consistent with an oblique convergence between the Panama and South American plates during the Cenozoic.A negative residual Bouguer anomaly of 20–70 mgls in the central part of the Valle del Cauca basin indicates that a substantial volume of low density sedimentary rocks is concealed beneath the thrust sheets exposed at the land surface. The hydrocarbon potential of the Valle del Cauca should be reevaluated in light of the structural interpretations presented in this paper.  相似文献   

9.
Cenozoic sedimentary deposits in central-southern Ningxia province, NW China are an important record of Tertiary tectonic events along the evolving Qinghai–Tibetan Plateau’s northeast margin. Shortly after the onset of the Indo-Eurasia collision to the south, a thrust belt and adjoining foreland basin began to form during 40–30 Ma. The Eocene Sikouzi Formation developed in a distal setting to this basin, in normal fault-bound basins that may have formed in a forebulge setting. Subsequent deposition of the Oligocene Qingshuiying Formation occurred during a phase of apparently less intense tectonism and the previous underfilled foreland basin became overfilled. During the Early Miocene, contractional deformation was mainly distributed to the west of the Liupan Shan. This resulted in deformation of the Qingshuiying Formation as indicated by an unconformity with the overlying Miocene Hongliugou Formation. The unconformity occurs proximal to the Haiyuan Fault suggesting that the Haiyuan Fault may have begun movement in the Early Miocene. In the Late Miocene, thrusting occurred west of the southern Helan Shan and an unconformity developed between the Hongliugou and Qingshuiying Formations proximal to the the Cha-Gu Fault. Relationships between the Miocene stratigraphy and major faults in the region imply that during the Late Miocene the deformation front of the Qinghai–Tibetan Plateau had migrated to the Cha-Gu Fault along the western Ordos Margin, and the Xiang Shan was uplifted. Central-southern Ningxia was then incorporated into the northeast propagating thrust wedge. The driving force for NE propagation of the thrust wedge was most likely pronounced uplift of the northeastern plateau at the same time. Analysis of the sedimentary record coupled with consideration of the topographic evolution of the region suggests that the evolving fold-and-thrust belt experienced both forward-breaking fold-and-thrust belt development, and out-of-sequence fault displacements as the thrust wedge evolved and the foreland basin became compartmentalised. The documented sedimentary facies and structural relationship also place constraints on the Miocene-Recent evolution of the Yellow River and its tributaries.  相似文献   

10.
林雨  王俊  罗亮东  李德亮  熊璨  肖明  张赛柯  方瑞泽  杨代峰 《地质论评》2024,70(2):2024020018-2024020018
重庆黔江正阳盆地位于川东南—湘鄂西隔槽式褶皱带中,发育上白垩统正阳组,其1段为冲、洪积相砾岩,2段为河、湖相砂岩、粉砂岩,含丰富的恐龙化石。该盆地是燕山运动在川东南—湘鄂西隔槽式褶皱带中形成的典型山间盆地,研究该盆地的构造—沉积演化对探讨晚白垩世渝东南构造演化具有重要意义,但目前针对该盆地的研究较少。本研究通过测量和分析正阳组中的沉积、构造特征,探讨了盆地的控盆断裂、古水流方向、沉积物来源以及构造演化史。对正阳组古流向恢复的研究表明,其物源主要来自西侧。燕山期,北西—南东向的区域挤压作用在川东南地区形成了广泛分布的节理系及逆冲断层,这些断层随着挤压应力的持续将各滑脱层连通,岩层在断坡附近堆叠,背斜扩展,逐渐形成隔槽式褶皱。燕山末期,渝东南地区在局部拉张的构造背景下发育了正断层——“阿蓬江断裂”,其控制了正阳盆地的形成,并形成“东断西超、东低西高”的古地理格局,西侧地质体为盆地提供物源,沉积了正阳组。此后,局部挤压使得该地区抬升,遭受剥蚀,南侧抬升剥蚀较北侧明显。  相似文献   

11.
The Ponts valley syncline is a closed basin within the Neuchâtel Jura fold and thrust belt. This syncline, apparently uplifted to an altitude of around 1000m is closed in the SW by an anticline with an oblique WNW-ESE direction. The 3-D geometry of the entire structure is examined and unfolded in detail. This syncline is filled with an unexpectedly thick series (~400m) of Tertiairy Molasse, as revealed by the CS-AMT (controlled source audio-magneto-telluric) and a reflexion seismic line. The latter also documents internal compressional structures within the well layered upper freshwater Molasse series. The 3-D configuration of the top Malm limestones has been constructed for the entire area based on new detailed geologic and structural mapping, hundreds of dip measurements, as well as geophysical data. The Malm marker bed displays three distinct types of structures: 1) Thrust faults with shallow dips, vergent to the NW and/or SE that are associated with folds interpreted as fault bend folds; 2) high angle inverse faults, mostly with a SE vergence are interpreted as inverted normal faults, inherited from a modest Oligo-Miocene extensional phase in a NW-SE direction; and 3) tear faults with a dominant N-S direction, probably inherited from an Oligocene extensional phase in association with the opening of the Rhine and Bresse grabens. Tear faults accommodate important lateral changes in fold geometry during the Late Miocene main folding-and-thrusting phase. All deformations are easily explained in an entirely thin-skinned fashion, taking place above a thick detachment horizon within Triassic evaporite series.Manuscrit reçu le 31 mars 2003 Révision acceptée le 23 juin 2004  相似文献   

12.
黔东南隔槽式褶皱成因分析   总被引:3,自引:0,他引:3       下载免费PDF全文
隔槽式褶皱与隔档式褶皱构成侏罗山式褶皱。传统观点认为,侏罗山式褶皱是滑脱作用所形成,其典型实例是在刚性岩体(基底)之上有一层软弱岩层,在软弱层之上的岩层发生“台布式”滑动而形成隔档隔槽式褶皱。黔东南地区隔槽式褶皱实地调查发现:(1)隔槽式向斜核部的地层比两翼和背斜核部的地层厚;(2)沿隔槽式向斜核部发育多期次活动的纵向断层,断层走向与褶皱枢纽一致;(3)背斜产状平缓变形弱而向斜产状急变变形强,背斜与向斜相间出露构成典型的强弱应变域,复杂变形发生在向斜核部。在湘黔交界处的寒武系内发育了典型的露头尺度隔槽式褶皱。通过隔槽式褶皱的露头尺度解析与宏观变形分析,认为黔东南隔槽式褶皱的形成受多期活动的断层控制,早期沉积阶段的正断层,控制了隔槽式褶皱紧闭向斜的发育位置,构造反转之后,先期断层是应力集中区,正断层转为平移或逆冲断层,在隔槽式褶皱向斜核部发育复杂变形。其次,正断层对隔槽式褶皱发育与逆断层对断弯褶皱发育的控制不同,前者断层发育早,后者断层发育晚。  相似文献   

13.
Abstract

A close relationship between formation of approximately upright folds with axes normal to the extension direction and ramp/flat extensional geometries is established for well exposed Neogene syn-extensional rocks on the presently low-angle Gediz detachment fault, along the southern margin of the Gediz Graben region of western Anatolia, Turkey. Three unconformity-bounded sedimentary sequences and several metamorphic extensional allochthons were mapped in the upper-plate of the Gediz detachment. The oldest sedimentary sequence consists of deformed and folded strata of sandstones and conglomerates that are regarded as being deposited in a supra-detachment basin during the Miocene-Early Pliocene. This unit rests unconformably on the extensional allochthonous, but directly in fault contact with the lower-plate mylonitic rocks. The younger slightly tilted Late Pliocene-Pleistocene sedimentary sequences are post-detachment units that are controlled by EW-trending high-angle normal faults. The youngest alluvium comprises the undeformed present-day basin fill of the Gediz Graben. The supra-detachment sedimentary rocks contain a number of kilometric-scale longitudinal folds that are nearly parallel to the east-west-trending fault system of the Gediz Graben. The folds have a steeply inclined bisecting surface, an interlimb angle of 130–150°, and a plunge of <10°. These folds may be interpreted to form as a result of bending in the underlying Gediz detachment fault. The bending may have an alternation of ramp and flat geometries on which a hanging-wall syncline and rollover anticline formed, respectively. This study again shows the importance of local geology in understanding of some spectacular structures of the extensional basins. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

14.
尼日尔三角洲盆地泥收缩构造发育特征及对沉积的控制   总被引:1,自引:0,他引:1  
泥收缩构造是发育在尼日尔三角洲盆地深水区的典型构造样式,属重力滑脱冲断构造,主要构造类型有冲断裂、塑性泥构造及相关褶皱和正断裂。基于地震地质解释,结合构造发育史分析,认为泥收缩构造主要受塑性泥构造控制,在中新世托尔托纳(Tortonian)晚期开始活动,中新世墨西拿期(Messinian)—上新世赞克勒期(Zanclean)达到最强,之后构造活动逐渐减弱,但至今仍在活动。通过古构造恢复,结合沉积展布分析,认为中新世托尔托纳晚期沉积开始受构造活动控制,托尔托纳阶上部及以上地层具有明显的同沉积特征,泥收缩构造相关的冲断裂上升盘厚度明显小于下降盘厚度,褶皱两翼的地层厚度明显厚于中间背斜顶部的地层厚度。  相似文献   

15.
出露在青藏高原北缘的红柳沟-拉配泉蛇绿混杂岩带一直以来为深入研究北阿尔金早古生代构造格架及演化提供了宝贵信息。经详细的野外地质填图和构造解析,文章针对红柳沟-拉配泉蛇绿混杂岩带内的构造样式、变形特征及形成时限进行研究,将北阿尔金蛇绿混杂岩带进一步细分为北侧混杂单元、中间层序单元和南侧混杂单元三个次级构造单元,南、北两侧混杂单元内以发育一系列复杂褶皱和逆冲断层为典型构造特征。卷入褶皱变形的最年轻地层岩石为中-晚奥陶世硅质岩,并被(416.8±3.7)Ma未变形的正长斑岩脉所截切;卷入逆冲断层的混杂岩中辉长岩和斜长花岗岩年龄为479~521 Ma和512.1~518.5 Ma,随后也被410.7~418.5 Ma未变形的冰沟岩体所侵位。这些基本事实表明,褶皱构造与逆冲断层均形成于中奥陶世-早泥盆世,推测其成因与北阿尔金洋俯冲作用导致的洋壳强烈缩短变形有关。在南侧混杂单元,褶皱构造样式自北向南逐渐由直立褶皱转变为斜歪褶皱,最后转变为倒转褶皱,显示出递进变形特征。褶皱所对应的应变椭球体也发生了旋转,表现出顶端指向北北东向的剪切作用,与混杂单元内逆冲断层所具有的向北北东方向逆冲、推覆特征相一致,从而推测它们与北阿尔金洋南南西向俯冲消减有密切联系。另外,在北侧混杂单元内还发育有同时期向南南东方向逆冲的断层以及轴面倾向北北东的斜歪褶皱,暗示北阿尔金洋在早古生代可能还发育有北北东方向的俯冲极性,整个北阿尔金洋俯冲消减模式可能具有双向性。   相似文献   

16.
The Balkassar oil field is situated in the eastern Potwar sub-basin, lies on the southern flank of Soan syncline in Himalayan collisional regime. The area represents Indo-Pak and Eurasian blocks of Precambrian to recent time. Thrusting and folding of Himalayan, Indo-Pak plate movement and Salt Range uplift form the structural trap in Balkassar sub-surface (Balkassar anticline). On the basis of information from eleven seismic 2D lines and wells data six reflectors well data, four faults were identified and marked. The structural trend is northeast southwest. Interpretation of seismic 2D data reveals that the study area has undergone intense deformation as a consequence of development of thrusts and backthrusts.The Balkassar anticline is bounded by two thrust faults one from southeast and the other from northwest. Time and depth contour models shows that anticline limbs at north-western side are steep as compared to south-eastern limbs. Seismic interpretation indicates the presence of well-developed anticline bounded by three faults in the cover sequence and one fault in basement and thus the structure may act as a trap for hydrocarbons. The petrophysical analysis of Balkassar-OXY-1 well shows about 83.1% hydrocarbons saturation in the reservoir rocks, hence this study suggest that Balkassar Oilfield has potential to produce hydrocarbons.  相似文献   

17.
The Umbria-Marche foreland fold-and-thrust belt in the northern Apennines of Italy provides excellent evidence to test the hypothesis of synsedimentary-structural control on thrust ramp development. This orogenic belt consists of platform and pelagic carbonates, Late Triassic to Miocene in age, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly active from Jurassic through Late Cretaceous-Paleogene time, resulted in significant lateral thickness variability within the related stratigraphic sequences. By Late Miocene time the sedimentary cover was detached from the underlying basement and was deformed by east-verging folds and west-dipping thrusts. Two restored balanced cross sections through the southernmost part of the belt show a coincidence between the early synsedimentary normal faults and the late thrust fault ramps. These evidences suggest that synsedimentary tectonic structures, such as faults and the related lithological lateral changes, can be regarded as mechanically important controlling factors in the process of thrust ramp development during positive tectonic inversion processes.  相似文献   

18.
青海省木里煤田弧山矿区东部找煤预测   总被引:1,自引:0,他引:1  
通过对区内褶皱特征、控煤断层及沉积环境的分析研究,预测在木里煤田弧山矿区东部仍有煤系地层赋存。预测区内构造为一宽缓向斜,与弧山向斜共同构成隔档式(梳状)褶皱。含煤地层为中下侏罗统江仓组,成煤环境属中生代断陷盆地内河湖、沼泽相沉积。F2为弧山矿区南部边界断层,在前期控制了煤系地层的沉积,后期又控制了煤系地层的埋深和保存,预测区所处位置其煤系地层埋藏较浅,较有利于煤层的开发和利用。  相似文献   

19.
通过野外地质调查结合大地电磁测深综合构造解释,在休宁—歙县金多金属矿整装勘查区及邻区厘定出发育于晚侏罗世的较大规模逆冲推覆构造,其由逆冲断层、逆冲岩席、原地岩系、构造窗及伴生的牵引褶皱等组成。该逆冲推覆构造发育于"屯溪—休宁"红层盆地南缘,表现为晚元古代浅变质火山-碎屑岩系逆冲推覆于中侏罗统洪琴组碎屑岩之上。逆冲推覆构造由一系列分支逆断层组成,以前展式叠瓦状逆冲为特征,断层前缘陡立,向下变缓。逆冲推覆构造呈北东走向展布,勘查区内延伸可达40 km,推覆体面积大于600 km2。构造窗出露位置结合钻探、物探揭示,逆冲位移为2.0~8.0 km。根据逆冲断层时空配套以及岩浆活动与波及的沉积地层,判断晚侏罗世逆冲推覆构造活动时间为163.5~149.0 Ma。通过逆冲断层擦痕观察及古应力场分析,认为该期逆冲推覆构造形成于华南板块向北强烈挤压的区域动力学环境。逆冲推覆构造为成矿前构造,其与之后发生的伸展构造对岩浆的侵入及含矿热液的流通起着重要的作用,控制了整装勘查区内金、银、铅锌等中低温元素的分布与富集成矿。  相似文献   

20.
柴达木盆地西部新生代沉积的发育受昆仑山(及青藏高原)崛起和阿尔金断裂的走滑活动控制。基于对该地新生界尤其是下油砂山组沉积环境的剖析,并与邻区的索尔库里北盆地进行对比,对阿尔金断裂的新生代的活动提出以下认识。1)古近纪为右行走滑,中新世起变为左行走滑,在盆地北缘伴随走滑发生的冲断作用,早期向北东扩展,晚期向南西扩展。2)阿尔金断裂的斜冲作用在始新世和上新世表现尤为明显,控制了下干柴沟组上段和狮子沟组异常高的沉积速率和沉积中心自西向东迁移。3)中新世是阿尔金断裂的松弛期,在次级北东向正断层的联合作用下可能在柴西形成拉分盆地,因而盆地发育特征明显不同于邻区的索尔库里北盆地。4)新近纪阿尔金断裂在左行走滑的大背景下经历了一个陆内的拉张—挤压旋回。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号