首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni, Co, and Zn are widely distributed in the Earth’s mantle as significant minor elements that may offer insights into the chemistry of melting in the mantle. To better understand the distribution of Ni2+, Co2+, and Zn2+ in the most abundant silicate phases in the transition zone and the upper mantle, we have analyzed the crystal chemistry of wadsleyite (Mg2SiO4), ringwoodite (Mg2SiO4), forsterite (Mg2SiO4), and clinoenstatite (Mg2Si2O6) synthesized at 12–20 GPa and 1200–1400 °C with 1.5–3 wt% of either NiO, CoO, or ZnO in starting materials. Single-crystal X-ray diffraction analyses demonstrate that significant amounts of Ni, Co, and Zn are incorporated in octahedral sites in wadsleyite (up to 7.1 at%), ringwoodite (up to 11.3 at%), olivine (up to 2.0 at%), and clinoenstatite (up to 3.2 at%). Crystal structure refinements indicate that crystal field stabilization energy (CFSE) controls both cation ordering and transition metal partitioning in coexisting minerals. According to electron microprobe analyses, Ni and Co partition preferentially into forsterite and wadsleyite relative to coexisting clinoenstatite. Ni strongly prefers ringwoodite over coexisting wadsleyite with \({D}_{\text{Ni}}^{\text{Rw}/\text{Wd}}\)?=?4.13. Due to decreasing metal–oxygen distances with rising pressure, crystal field effect on distribution of divalent metal ions in magnesium silicates is more critical in the transition zone relative to the upper mantle. Analyses of Ni partitioning between the major upper-mantle phases implies that Ni-rich olivine in ultramafic rocks can be indicative of near-primary magmas.  相似文献   

2.
3.
Crystal chemistry of wadsleyite II and water in the Earth’s interior   总被引:1,自引:1,他引:0  
Wadsleyite II is a variably hydrous magnesium-iron silicate phase similar to spinelloid IV and a potential host for H in the Transition Zone of the Earths mantle. Two separate samples of wadsleyite II synthesized at 17.5 GPa and 1400°C and at 18 GPa and 1350°C have been characterized by electron microprobe, single-crystal X-ray diffraction, visible, IR, Raman, and Mössbauer spectroscopies, and transmission electron microscopy including electron energy-loss spectroscopy. The two samples have the following chemical formulae: Mg1.71Fe0.18Al0.01H0.33Si0.96O4 and Mg1.60Fe0.22Al0.01 H0.44Si0.97O4. Mössbauer spectroscopy and electron energy loss spectroscopy (EELS) indicate that about half of the iron present is ferric. Refinement of the structures shows them to be essentially the same as spinelloid IV. Calculated X-ray powder diffraction patterns show only subtle differences between wadsleyite and wadsleyite II. The hydration mechanism appears to be protonation of the non-silicate oxygen (O2) and possibly the oxygens surrounding the partially vacant tetrahedral site Si2, charge-balanced by cation vacancies in Si2, M5 and M6. The unit cell volume of this phase and its synthesis conditions indicate that it may be an intermediate phase occurring between the fields of wadsleyite and ringwoodite, if sufficient trivalent cations are available. The unit cell parameters have been refined at pressures up to 10.6 GPa by single-crystal X-ray diffraction in the diamond anvil cell. The refined bulk modulus for the sample containing 2.8 wt% H2O is 145.6 ± 2.8 GPa with a K of 6.1 ± 0.7. Similar to wadsleyite and ringwoodite, hydration has a large effect on the bulk modulus. The presence of this phase in the mantle could serve to obscure the seismic expression of the phase boundary between wadsleyite and ringwoodite near 525 km. The large apparent effect of hydration on bulk modulus is consistent with hydration having a larger effect on seismic velocities than temperature in the Transition Zone.  相似文献   

4.
Single crystals of five wadsleyite compositions, β-(Mg,Fe)2SiO4 with Fe/(Fe+Mg)=0.00, 0.08, 0.16, 0.25 and 0.40, have been synthesized at high temperature and pressure in a uniaxial, split-sphere apparatus. Crystal structures of these samples, determined by x-ray diffraction techniques, reveal that iron is significantly ordered: Fe is depleted in the M2 octahedron, while it is enriched in M1 and M3. The most iron-rich synthetic sample, which falls well outside previous estimates of wadsleyite stability, raises questions regarding published Mg2SiO4-Fe2SiO4 phase diagrams at transition zone conditions.  相似文献   

5.
The crystal structures of the two hydrous wadsleyite crystals with formulae, Mg1.75SiH0.50O4 (0.5H–β) and Mg1.86SiH0.28O4 (0.3H–β) have been analyzed in this study. The single-crystal X-ray diffraction data showed that the unit cells of the 0.3H–β and the 0.5H–β are metrically monoclinic with a slight distortion from the orthorhombic cell but their intensity distributions conform to the orthorhombic symmetry within the limit of experimental errors. The Fourier and the difference Fourier syntheses were calculated. Small but significant Fourier peaks were found at the site, Si2, in a normally vacant tetrahedral void adjacent to Mg3 site as reported for the monoclinic hydrous wadsleyite by Smyth et al.. From the comparison of the hydrous and anhydrous wadsleyite structures, the Mg-vacant structural modules were found to be the building units for the structure of hydrous wadsleyite. The dilution of symmetry from orthorhombic to monoclinic in the hydrous wadsleyite structure is interpreted qualitatively due to lack of mirror perpendicular to the a axis in the module. The mode of arrangement of the Mg-vacant structural modules interprets the symmetry and hydrogen content of the hydrous wadsleyite and gives the structural relationship between hydrous wadsleyite and hydrous ringwoodite. Received: 8 May 1998 / Revised, accepted: 3 October 1998  相似文献   

6.
7.
The results of study of phase equilibria in the MgO–SiO2–ZrO2 system at 1450–1550°C are reported. The studied system contains two eutectic points and six fields: (I) MgSiO3 + SiO2; (II) MgSiO3 + ZrO2; (III) ZrSiO4 + SiO2; (IV) MgSiO3 + Mg2SiO4; (V) ZrO2 + MgO; (VI) ZrSiO4 + ZrO2. The presence of fields (II) and (III) on the diagram shows that zircon in equilibrium with olivine and pyroxene crystallizes at very low concentrations of ZrO2 in the system. This provides a solution for one of the most important problems in zirconology of dunites: the probability of the formation and preservation of zircon in the course of the formation and evolution of dunite.  相似文献   

8.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.  相似文献   

9.
Experiments on water solubility in forsterite in the systems Mg2SiO4–K2Mg(CO3)2–H2O and Mg2SiO4–H2O–C were conducted at 7.5–14.0 GPa and 1200–1600 °C. The resulting crystals contain 448 to 1480 ppm water, which is 40–70% less than in the forsterite–water system under the same conditions. This can be attributed to lower water activity in the carbonate-bearing melt. The water content of forsterite was found to vary systematically with temperature and pressure. For instance, at 14 GPa in the system forsterite–carbonate–H2O the H2O content of forsterite drops from 1140 ppm at 1200 °C to 450 ppm at 1600 °C, and at 8 GPa it remains constant or increases from 550 to 870 ppm at 1300–1600 °C. Preliminary data for D-H-bearing forsterite are reported. Considerable differences were found between IR spectra of D-H- and H-bearing forsterite. The results suggest that CO2 can significantly affect the width of the olivine-wadsleyite transition, i.e., the 410-km seismic discontinuity, which is a function of the water content of olivine and wadsleyite.  相似文献   

10.
Classical atomistic simulation techniques have been used to investigate the energies of hydrogen defects in Mg2SiO4 and Mg2GeO4 spinels. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral in the lower part of the transition zone and can incorporate large amounts of water in the form of hydroxyls, whereas the germanate spinel (γ-Mg2GeO4) corresponds to a low-pressure structural analogue for ringwoodite. The calculated defect energies indicate that the most favourable mechanisms for hydrogen incorporation are coupled either with the reduction of ferric iron or with the creation of tetrahedral vacancies. Hydrogen will go preferentially into tetrahedral vacancies, eventually leading to the formation of the hydrogarnet defect, before associating with other negatively charged point defects. The presence of isolated hydroxyls is not expected. The same trend is observed for germanate, and thus γ-Mg2GeO4 could be used as a low-pressure analogue for ringwoodite in studies of water-related defects and their effect on physical properties.  相似文献   

11.
Our experimental simulations of the exhumation path of mantle peridotites show that high‐temperature (1400 °C) decompression of lherzolite from 14 to 13 and 12 GPa results in exsolution of interstitial blebs of diopside and Mg2SiO4 (wadsleyite) lamellae from majoritic garnet. At lower pressures (from 8 to 5 GPa, at T = 1400 °C) only enstatite exsolves as blebs at garnet boundaries. Continuous high‐temperature decompression from 14 to 7 GPa produces zoned majoritic garnet containing blebs of exsolved pyroxenes inside garnet rims. No intracrystalline precipitation of pyroxene was observed in garnet, although such lamellae are found in some natural garnet peridotites. The explanation appears to be the three orders of magnitude difference in grain size between experimental and natural specimens. Our data suggest that Mg2SiO4 and diopside exsolutions reflect the deepest point of the exhumation path of garnet peridotites, whereas enstatite precipitation may be restricted to garnets with less majoritic component at shallower depths.  相似文献   

12.
Experiments at high pressures and temperatures reveal the stability of a Fe4O5-type structured phase in several simple chemical systems. On the one hand, the Fe4O5 end-member is stable in the presence of SiO2-rich phases, including stishovite, but contains ≤0.01 Si cations per formula unit. This indicates that Si is essentially excluded from this phase. On the other hand, the Fe4O5 phase can form solid solutions with Mg and Cr and can coexist with silicate phases at the high PT conditions expected in the transition zone of the mantle (i.e. >~9 GPa). It can coexist with both wadsleyite and Mg-rich ringwoodite and can contain at least 25 mol% Mg2Fe2O5 component. The Fe4O5 phase always contains the least amount of Mg in any given mineral assemblage. Cr-bearing Fe4O5 has been synthesised with up to 46 mol% Fe2Cr2O5 component and can coexist with spinel and/or hematite-eskolatite solid solutions. Substitution of Mg and Cr for Fe2+ and Fe3+, respectively, leads to variations in Fe3+/∑Fe from the ideal value of 0.5 for the Fe4O5 end-member composition, which can influence its redox stability. These cations also have contrasting effects on the unit-cell parameters, which indicate that they substitute into different sites. This initial study suggests that Fe4O5-type structured phases may be stable over a range of PTfO2 conditions and bulk compositions, and can be important in understanding the post-spinel phase relations in a number of chemical systems relevant to the Earth’s transition zone. Thus, the presence of even small amounts of Fe3+ could alter the expected phase relations in peridotitic bulk compositions by stabilising this additional phase.  相似文献   

13.
The olivine-beta phase transformation in Co2SiO4 has been studied in a large-volume high-pressure apparatus (USSA-2000). The experimental conditions straddle the univariant phase boundaries due to the presence of a substantial temperature gradient (150–200° C over the 3-mm length of the sample). At conditions close to equilibrium, the transformation mechanism is one of limited nucleation with rapid growth of large crystals of the beta phase. Transmission electron microscopy (TEM) analysis shows that the cation stacking faults in Co2SiO4-spinel are identical to those seen in numerous spinels. The 010 faults in beta-Co2SiO4 are found to be identical to those seen in beta-(Mg,Fe)2SiO4 found in shocked veins in meteorites.  相似文献   

14.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   

15.
 We carried out a series of melting experiments with hydrous primitive mantle compositions to determine the stability of dense hydrous phases under high pressures. Phase relations in the CaO–MgO–Al2O3–SiO2 pyrolite with ˜2 wt% of water have been determined in the pressure range of 10–25 GPa and in the temperature range between 800 and 1400 °C. We have found that phase E coexisting with olivine is stable at 10–12 GPa and below 1050 °C. Phase E coexisting with wadsleyite is stable at 14–16 GPa and below 900 °C. A superhydrous phase B is stable in pyrolite below 1100 °C at 18.5 GPa and below 1300 °C at 25 GPa. No hydrous phases other than wadsleyite are stable in pyrolite at 14–17 GPa and 900–1100 °C, suggesting a gap in the stability of dense hydrous magnesium silicates (DHMS). We detected an expansion in the stability field of wadsleyite to lower pressures (12 GPa and 1000 °C). The H2O content of wadsleyite was found to decrease not only with increasing temperature but also with increasing pressure. The DHMS phases could exist in a pyrolitic composition only under the conditions present in the subducting slabs descending into the lower mantle. Under the normal mantle and hot plume conditions, wadsleyite and ringwoodite are the major H2O-bearing phases. The top of the transition zone could be enriched in H2O in accordance with the observed increase in water solubility in wadsleyite with decreasing pressure. As a consequence of the thermal equilibration between the subducting slabs and the ambient mantle, the uppermost lower mantle could be an important zone of dehydration, providing fluid for the rising plumes. Received: 9 September 2002 / Accepted: 11 January 2003 Acknowledgements The authors are thankful to Y. Ito for the assistance with the EPMA measurement, A. Suzuki, T. Kubo and T. Kondo for technical help with the high-pressure experiments and Raman and X-ray diffraction measurements and C.R. Menako for technical support. K. Litasov thanks H. Taniguchi for his continuous encouragement and the Center for Northeast Asian Studies of Tohoku University and the Japanese Society for the Promotion of Science for the research fellowships. This work was partially supported by the Grant-in-Aid of Scientific Research of the Priority Area (B) of the Ministry of Education, Science, Sport, and Culture of the Japanese government (no. 12126201) to E. Ohtani.  相似文献   

16.
Synthetic ringwoodite γ-(Mg1?x Fe x )2SiO4 of 0.4 ≤ x ≤ 1.0 compositions and variously colored micro-grains of natural ringwoodite in shock metamorphism veins of thin sections of two S6-type chondrites were studied by means of microprobe analysis, TEM and optical absorption spectroscopy. Three synthetic samples were studied in addition with Mössbauer spectroscopy. The Mössbauer spectra consist of two doublets caused by VIFe2+ and VIFe3+, with IS and QS parameters close to those established elsewhere (e.g., O’Neill et al. in Am Mineral 78:456–460, 1993). The Fe3+/Fetotal ratio evaluated by curve resolution of the spectra, ranges from 0.04 to 0.1. Optical absorption spectra of all synthetic samples studied are qualitatively very similar as they are directly related to the iron content. They differ mostly in the intensity of the observed absorption features. The spectra consist of a very strong high-energy absorption edge and a series of absorption bands of different width and intensity. The three strongest and broadest absorptions of them are attributed to splitting of electronic spin-allowed 5 T 2g → 5 E g transitions of VIFe2+ and intervalence charge-transfer (IVCT) transition between ferrous and ferric ions in adjacent octahedral sites of the ringwoodite structure. The spin-allowed bands at ca. 8,000 and 11,500 cm?1 weakly depend on temperature, whilst the Fe2+/Fe3+ IVCT band at ~16,400 cm?1 displays very strong temperature dependence: i.e., with increasing temperature it decreases and practically disappears at about 497 K, a behavior typical for bands of this type. With increasing pressure the absorption edge shifts to lower energies while the spin-allowed bands shift to higher energy and strongly decreases in intensity. The IVCT band also strongly weakens and vanishes at about 9 GPa. We assigned this effect to pressure-induced reduction of Fe3+ in ringwoodite. By analogy with synthetic samples three broad bands in spectra of natural (meteoritic) blue ringwoodite are assigned to electronic spin-allowed transitions of VIFe2+ (the bands at ~8,600 and ~12,700 cm?1) and Fe2+/Fe3+ IVCT transition (~18,100 cm?1), respectively. Spectra of colorless ringwoodite of the same composition consist of a single broad band at ca. 12,000 cm?1. It is assumed that such ringwoodite grains are inverse (Fe, Mg)2SiO4-spinels and that the single band is caused by the split spin-allowed 5 E → 5 T 2 transition of IVFe2+. Ringwoodite of intermediate color variations between dark-blue and colorless are assumed to be partly inversed ringwoodite. No glassy material between the grain boundaries in the natural colored ringwoodite aggregates was found in our samples and disprove the cause of the coloration to be due to light scattering effect (Lingemann and Stöffler in Lunar Planet Sci 29(1308), 1998).  相似文献   

17.
 Mg-Fe partitioning experiments between (Mg,Fe)2SiO4 spinel and (Mg,Fe)O magnesiowüstite were carried out at pressures of 17–21.3 GPa at temperatures of 1400 and 1600 °C, using a multi-anvil apparatus, in order to determine interaction parameters of spinel and magnesiowüstite solid solutions and also to constrain the equilibrium boundaries of the postspinel transition in the Fe-rich side in the system Mg2SiO4-Fe2SiO4. The obtained values of the interaction parameters were 3.4 ± 1.5 and 13.9 ± 1.4 kJ mol−1, respectively, for spinel and magnesiowüstite solid solutions at 19 GPa and 1600 °C. The partitioning data in the system Mg2SiO4-Fe2SiO4 at 1400 and 1600 °C showed that the transition boundary between spinel and the mixture of magnesiowüstite and stishovite has a negative dP/dT slope. Using the above interaction parameters and available thermodynamic data of the Mg2SiO4 and Fe2SiO4 end members, the transition boundaries of spinel to the mixture of magnesiowüstite and stishovite were calculated. Within the uncertainties of the data used, the calculated boundaries are in good agreement with the boundaries at 1400 and 1600 °C experimentally determined in this study. The dissociation boundary of Fe2SiO4 spinel to wüstite and stishovite, calculated from the thermodynamic data, has a negative slope of −1.5 ± 0.6 MPa K−1. Received: 18 February 1998 / Revised, accepted: 18 October 1999  相似文献   

18.
The aim of the work presented is to develop a computer simulation technique which will predict the structure and physical properties of forsterite and ringwoodite, the major mantle-forming polymorphs of Mg2SiO4. The technique is based upon energy minimization, in which all structural parameters are varied until the configuration with the lowest energy is achieved. The lattice energy and physical properties (e.g. elasticity and dielectric constants) are calculated from interatomic potentials, which generally include electrostatic and short-range terms. We investigate several types of traditional potential models, and present a new type of model which includes partial ionic charges and a Morse potential to describe the effect of covalency on the Si-O bond. This new form of potential model is highly successful, and not only reproduces the zero-pressure structural, elastic and dielectric properties of forsterite and ringwoodite, but also accurately describes their pressure dependence.  相似文献   

19.
20.
Molecular dynamics simulations based on ab initio interatomic potentials have been performed to study the kinetics and mechanisms of interdiffusion in MgSiO3 and Mg2SiO4 melts. Diffusion coefficients in the presence of a concentration gradient are lower than self-diffusion coefficients due to the requirements of local charge-balance within the system. Extrapolations of Mg2+ diffusion coefficients obtained at high temperatures (5000 to 3000 K) into geologically relevant temperatures (1500 to 2500 K) are reasonably accurate compared to experimental Mg2+ diffusion coefficients in a compositionally similar system. A significant system-size effect is also observed on the rates of diffusion obtained from the molecular dynamics simulations. Diffusion mechanisms involve movement of individual Mg2+ and O2- ions and anionic [SiOn](4–2n) complexes for both self-diffusion and interdiffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号