首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of the surface roughness, geostrophic wind speed and initial stable stratification on surface layer scales, namely the friction velocity, temperature scale and the Monin-Obukhov length, and on non-dimensional profiles has been studied in quasi-stationary PIAPBLM (Prague Institute of Atmospheric Physics Boundary Layer Model) runs. Modifications of the stability functions, of the non-local mixing length concept, and of surface layer parametrization have improved the model results. With the ground temperature kept constant in time, the boundary layer is subjected to a turbulent cooling induced by surface roughness and to a counteracting turbulent heat transfer directed downwards. If the wind speed is lower, a rather mixed layer develops capped by a more stable layer. The estimated Monin-Obukhov length then slightly increases and the non-dimensional gradients overpredict the empirical values even more.  相似文献   

2.
This paper addresses the quantification of gravity wave drag due to small hills in the stable boundary layer. A single column atmospheric model is used to forecast wind and temperature profiles in the boundary layer. Next, these profiles are used to calculate vertical profiles of gravity wave drag. Climatology of wave drag magnitude and “wave drag events” is presented for the CASES-99 experimental campaign. It is found that gravity wave drag events occur for several relatively calm nights, and that the wave drag is then of equivalent magnitude as the turbulent drag. We also illustrate that wave drag events modify the wind speed sufficiently to substantially change the surface sensible heat flux.  相似文献   

3.
Ren  Yan  Zhang  Hongsheng  Wei  Wei  Cai  Xuhui  Song  Yu  Kang  Ling 《中国科学:地球科学(英文版)》2019,62(12):2058-2068
In this study,the characteristics of turbulence transport and intermittency and the evolutionary mechanisms were studied in different pollution stages of heavy haze weather from December 2016 to January 2017 in the Beijing area using the method developed by Ren et al.(2019) as the automatic identification of atmospheric spectral gaps and the reconstruction of atmospheric turbulence sequences.The results reveal that turbulence intermittency is the strongest in the cumulative stage(CS)of heavy haze weather,followed by in the transport stage(TS),and it is the weakest in the dissipation stage(DS).During the development and accumulation of haze pollution,buoyancy contributes negatively to turbulent kinetic energy(TKE),and horizontal wind speed is low.The classical turbulent motion is often affected by submesoscale motion.As a result,the calculation results of turbulence parameters are affected by submesoscale motion,which causes intensified turbulence intermittency.During the dissipation of pollution,the downward momentum transfer induced by low-level jets provides kinetic energy for turbulent motion in the near surface layer.The turbulent mixing effect is enhanced,and intermittency is weakened.Due to the intermittency of atmospheric turbulence,turbulence parameters calculated from the original fluctuation of meteorological elements may be overestimated.The overestimation of turbulence parameters in the CS is the strongest,followed by the TS,and the DS is the weakest.The overestimation of turbulent fluxes results in an overestimation of atmospheric dissipation capability that may cause an underestimation of pollutant concentrations in the numerical simulations of air quality.  相似文献   

4.
According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second Tibetan (Qinghai-Xizang) Plateau Experiment of atmospheric science (TIPEX), the land-air physical process and dynamic model on the Tibetan Plateau were comprehensively analyzed in this study. The dynamic characteristics of boundary layer and the rules of turbulent motion on the plateau were illustrated. The characteristics of distributions of wind speed and direction with mutiple-layer structure and deep convective mixed layer on the plateau, the strong buoyancy effect in turbulent motion on the plateau on which the air density is obviously smaller than on the plain, and the Ekman spiral and its dynamic pump effect of the plateau deep boundary layer have been found. The local static distribution of water vapor and the horizontal advection of water vapor in the plateau boundary layer were studied. The abnomal thermodynamic structure on the plateau surface and boundary layer, including the plateau strong radiation phenomenon and strong heating source characteristics of the middle plateau, was also analyzed. The authors synthesized the above dynamic and thermodynamic structures of both surface and boundary layers on the plateau and posed the comprehensive physical model of the turbulence and convective mixture mechanism on the plateau boundary layer. The characteristics of formation, development and movement for convective cloud cluster over the plateau influencing floods in the Yangtze River area of China were studied. The conceptual model of dynamic and thermodynamic structures of turbulent motion and convective plume related to the frequent occurrence of "pop-corn-like" cloud system is given as well.  相似文献   

5.
Quantifying aeolian sand transport rates relies upon the computation of the near-surface shear velocity (u*) determined from velocity profiles of the wind. While it has been recognized that various conditions, such as saltation, surface roughness, surface slope and atmospheric conditions, have an effect on the velocity profile, it is commonly assumed that measurements made above the surface will be representative of the near-surface shear velocity. Airflow and temperature data collected over a flat substrate at White Sands National Monument in New Mexico, however, show the significant effects that atmospheric conditions have on velocity profiles. During the day, when solar insolation is heating the surface, atmospheric conditions in the lowest several metres become unstable, resulting in enhanced convection and vertical mixing so that the velocity gradient changes little with height. As a result, the shear stress in this region of vertical mixing lessens, while the near-surface shear stress is increased because the higher wind speeds are now nearer the surface. At night, the near-surface atmospheric conditions are stable, thereby reducing convection and vertical mixing, resulting in stratified airflow and increased shear velocity away from the surface. Unless this atmospheric effect is accounted for, estimates of sediment transport rates may be in error by as much as a factor of 15 times when wind speeds are near threshold velocity. At wind speeds approaching 10 ms1, at 5m above the surface, this error in computing sediment transport is reduced to a factor of only two to three times, and may be within the range of measurement error.  相似文献   

6.
通过求解含有摩擦耗散的线性化大气动力学方程组,得到了在夜间稳定大气边界层中小尺度地形产生的波动阻力和形式阻力的解析解.结果表明边界层中的稳定度、风速和湍流状态、边界层厚度、上部残余层中的稳定度和风速以及地形高度和坡度,都会影响波动阻力和形式阻力的大小,应在数值模式的参数化方案中给予考虑.分析还表明,当地形坡度减到一定程度时,形式阻力可以忽略不计.  相似文献   

7.
Abstract

The nonlinear equations of motion are integrated numerically in time for a region of x‐y‐z space of volume 3h × h × h, where h turns out to be a height slightly above the level where the wind first attains the geostrophic flow direction. Only the ideal case is treated of a horizontal lower boundary, neutral stability, horizontal homogeneity of all dependent mean variables except the mean pressure, and statistically steady state. The resulting flow patterns are turbulent and the eddies transport required amounts of momentum vertically.

Topics which are investigated include the relative directions of stress, wind shear and wind; differences in Ekman wind spirals for the neutral numerical case and a stable atmospheric case; profiles of dimensionless turbulence statistics; effect of allowing the mean density to be either constant or to decrease with height; effect of the wind direction or latitude upon the turbulence intensities; and characteristic structure of the eddies in the planetary boundary layer.  相似文献   

8.
Fluctuations of short period in the atmospheric electric field were studied through the measurements of electric field and space charge density on the Mid-Pacific Ocean. The amplitude of fluctuation is about one third of the mean electric field, and the period mainly ranges from 2 to 5 min. The fluctuations are considered to be under the influence of spatial and temporal variation of space charge layer that possibly originates from the electrode effect above the sea surface. The unit of electrical irregularities in the atmosphere above the ocean has horizontal scale of the order of 1.5 km and indicates a tendency to become large as the wind speed increases. The vertical scale of space charge layer is estimated at several tens meters.  相似文献   

9.
A simplified one dimensional analytical model to describe the altitude variation of aerosol number densities in the atmospheric boundary layer during clear sky and calm/moderate wind conditions, over a plane terrain on the tropical seacoast, is developed. The analytical model is mainly defined by two parameters, the aerosol mixing height and the exponential rate of decrease above the mixing height. The effect of surface impaction is also taken into account in this model. It is seen that this parameter varies with season. By matching the analytical profile with the observed mean profile in each month, the surface source strength has been estimated. The seasonal and inter-annual variations of this parameter are studied.  相似文献   

10.
本文利用高分辨率中尺度WRF模式,通过改变边界层参数化方案进行多组试验,评估该模式对美国北部森林地区边界层结构的模拟能力,同时比较了五种不同边界层参数化方案模拟得出的边界层热力和动力结构.结果表明:除个别方案外,配合不同边界层方案的WRF模式都能成功模拟出白天对流边界层强湍流混合特征和夜间稳定边界层内强逆温、逆湿和低空急流等热力和动力结构.非局地YSU、ACM2方案在白天表现出强的湍流混合和卷夹,相比于局地MYJ、UW方案,模拟的对流边界层温度更高、湿度更低、混合层高度更高、感热通量更大,更接近实际观测,这表明在不稳定层结下考虑非局地大涡输送更为合理,但局地方案在风速和风向的预报上存在一定优势.TEMF方案得到的白天局地湍流混合强度为所有方案中最弱,混合层难以发展,无法体现对流边界层内气象要素垂直分布均匀的特点.对于夜间稳定边界层的模拟,不同参数化方案之间的差异较小,但是YSU方案在一定程度上高估了机械湍流,导致局地湍流混合偏强,从而影响了其对稳定边界层的模拟能力.  相似文献   

11.
An important part of the influence of the oceans on the atmosphere is through direct radiation, sensible heat flux and release of latent heat of evaporation, whereby all of these processes are directly related to the surface temperature of the oceans. A main effect of the atmosphere on the oceans is through momentum exchange at the air-ocean interface, and this process is directly related to the surface wind stress. The sea surface temperature (SST) and the surface wind stress are the two important components in the air-ocean system. If SST is given, a thermally forced boundary layer atmospheric circulation can be simulated. On the other hand, if the surface wind stress is given, the wind-driven ocean waves and ocean currents can be computed.The relationship between SST and surface wind is a coupling of the atmosphere and the oceans. It changes a one-way effect (ocean mechanically driven by atmosphere, or atmosphere thermally forced by oceans) into two-way air-sea interactions. Through this coupling the SST distribution, being an output from an ocean model, leads to the thermally forced surface winds, which feeds back into the ocean model as an additional forcing.Based on Kuo's planetary boundary layer model a linear algebraic equation is established to link the SST gradient with the thermally forced surface wind. The surface wind blows across the isotherms from cold to warm region with some deflection angle to the right (left) in the Northern (Southern) Hemisphere. Results from this study show that the atmospheric stratification reduces both the speed and the deflection angle of the thermally forced wind, however, the Coriolis' effect increases the wind speed in stable atmosphere (Ri>10–4) and increases the deflection angle.  相似文献   

12.
Vegetation constitutes one of the fundamental types of land use on Earth. The presence of trees in urban areas can decrease local winds and exchange sensible and latent heat with the surrounding environments, thus exerting notable influences on the urban microenvironment. A better understanding of the turbulent transfer of momentum and scalars around vegetation canopy could significantly contribute to improvement of the urban environment. This work develops a large-eddy simulation(LES) method that is applicable to model the flow and scalar transport over the forest canopy. We study the atmospheric flow over complex forested areas under typical weather conditions by coupling LES to the mesoscale model. Models of radiation and energy balance have been developed with explicit treatment of the vegetation canopy. By examining the flow over a forest canopy under a range of stability conditions, we found that buoyancy enhances or suppresses turbulent mixing in unstable or stable atmosphere respectively, with decreasing or increasing wind shear, respectively. From the multiscale modeling of the Beijing Olympic Forest Park, the present coupling scheme proves to better resolve the diurnal variations in wind speed,temperature, and relative humidity over complex urban terrains. The coupling scheme is superior to the traditional mesoscale model in terms of wind field simulation. This is mainly because the coupling scheme not only takes the influences of external mesoscale flow into consideration, but also resolves the heterogeneous urban surface at a fine scale by downscaling, thus better reproducing the complex flow and turbulent transport in the urban roughness sublayer.  相似文献   

13.
基于大气边界层动量、感热和水汽通量的基本方程,定量地计算了波动海面的动量、感热和水汽通量。首先,应用Prandtl的混合长概念,推导出贴海面大气层中风速、位温和比湿的涡动交换率及其贴海面层厚度,并且证明了波面上位温或比湿贴海面层厚度与速度贴海面层厚度的比值,和平面上的相应比值完全相等。随后,利用空气动力学理论讨论了贴海面动量、感热和水汽输送的参数化问题。最后,对现有五种理论模式进行了比较说明。  相似文献   

14.
The dynamics of pyroclastic surges accompanied by co-ignimbrite plumes is investigated numerically. The numerical simulations are performed with a newly developed numerical model, which is based on the Navier–Stokes equations for time-dependent flows of a compressible fluid in two-dimensional Cartesian coordinates. We regard pyroclastic surges as dilute turbulent suspensions in which hot gases and fine solid particles are homogeneously mixed owing to vigorous turbulence. In other words, the gas–particle mixture is treated as a single-phase fluid whose bulk density is represented by averaging the density of each component in the numerical model. We focus on the effect of buoyancy forces generated by the thermal expansion of the air mixed into pyroclastic surges from the calm surroundings. For our purpose, the numerical model is designed to simulate relatively simple flows spreading over a horizontal flat surface. Topographic irregularity and the sedimentation process of solid particles are neglected in the present simulations. The motion of pyroclastic surges is generated by the instantaneous release of a gas–particle mixture whose density is initially larger than the ambient air density and changes nonlinearly with the temperature and concentration of suspended solid particles. Turbulent mixing is evaluated by adopting the Smagorinsky model. By employing cubic interpolated pseudo-particle (CIP) method and C-CUP method, we obtain the fine structure of flows. The behavior of calculated flows agrees fairly well with observed pyroclastic surges in nature. The current head, which remains hot and dense, keeps spreading over a horizontal surface at a speed of about 20 m s−1. The spreading speed is of the order of the speed of a gravity current that excludes the influence of thermal expansion. Besides, turbulent mixing between the basal dense layer and the ambient air is enhanced by the successive development of an interfacial less-dense layer. This results in the formation of a number of buoyant plumes rising above a horizontally spreading current. Consequently, the tails of the current thickens as time progresses. A parametric study shows that the initial temperature of a gas–particle mixture should be higher than about 600 K when buoyant plumes occur owing to the thermal expansion of mixed air. The result is quantitatively interpreted by introducing a diagram that describes the relationship among the bulk density, temperature and concentration of solid particles suspended in pyroclastic surges.  相似文献   

15.
Summary The solution of the ionization balance equation is found in the surface air layer at horizontal homogeneity assuming an exponential law for the turbulent diffusion coefficient. Expressions describing the vertical distribution of the small ion concentration are found estimating on their basis the layer height by an electrode effect. A relation is found among the small ion concentration, the electric conductivity and the electric field in the surface layer.  相似文献   

16.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

17.
Stable-boundary-layer regimes from the perspective of the low-level jet   总被引:2,自引:0,他引:2  
This paper reviews results from two field studies of the nocturnal stable atmospheric boundary layer (SBL) over the Great Plains of the United States. Data from a scanning remote-sensing system, a High-Resolution Doppler Lidar (HRDL), provided measurements of mean and turbulent wind components at high spatial and temporal resolution through the lowest 500–1000 m of the atmosphere. This data set has allowed the characteristics of the low-level jet (LLJ) maximum (speed, height, direction) to be documented through entire nights. LLJs form after sunset and produce strong shear in the layer below the LLJ maximum or nose, which is a source of turbulence and mixing in the SBL. Simultaneous HRDL measurements of turbulence quantities related to turbulence kinetic energy (TKE) has allowed the turbulence in the subjet layer to be related to LLJ properties. Turbulence structure was found to be a function of the bulk stability of the subjet layer. For the strong-LLJ (> 15 m s−1), weakly stable cases the strength of the turbulence is proportional to the strength of the LLJ. For these cases with nearly continuous turbulence in the subjet layer, low-level jet scaling, in which lengths are scaled by the LLJ height and velocity variables are scaled by the LLJ speed, was found to be appropriate. For the weak-wind (< 5 m s−1 in the lowest 200 m), very stable boundary layer (vSBL), the boundary layer was found to be very shallow (sometimes < 10 m deep), and turbulent fluxes between the earth’s surface and the atmosphere were found to be essentially shut down. For more intermediate wind speeds and stabilities, the SBL shows varying degrees of intermittency due to various mechanisms, including shearinstability and other gravity waves, density currents, and other mesoscale disturbances.  相似文献   

18.
西藏高原斜压对流边界层风、温、湿廓线特征   总被引:18,自引:0,他引:18       下载免费PDF全文
利用1998年夏季第2次青藏高原大气科学试验当雄观测站的边界层观测资料以及拉萨、改则和武汉等地探空资料,分析讨论西藏高原斜压对流边界层风、温、湿廓线的特征. 研究结果表明,高原地区白天对流边界层发展可高达2200m,显著超过中纬度平原地区和海面上对流边界层高度. 高原对流边界层中温度廓线具有较好的混合特征,湿度廓线有时在某一高度上出现湿度极大值. 高原对流边界层内热量和水汽收支分析表明,水平平流作用对边界层结构具有重要作用. 在对流边界层中平均风速垂直分布存在风切变现象. 水平温度梯度形成较强的斜压性是形成边界层风切变的主要原因.  相似文献   

19.
本文基于大气辐射的基本概念和原理,对海面有效辐射进行分析讨论。首先,根据近海面大气边界层中的气温和湿度廓线跟风速廓线的相似性,采用海面粗糙参数z_0来定义海面。其次,由海面有效辐射的定义和大气辐射理论导出海面有效辐射的一般表达式。然后,对海洋大气的垂直结构作了分层描述,从而对海面有效辐射一般表达式进行具体运算,并且求得简化分析式。最后,利用海洋观测站资料,对本分析式和一些经验公式进行计算和对比。结果表明,晴天与阴天的海面有效辐射值相差较大,可是它们随海面风速的变化均甚小。  相似文献   

20.
藏南羊卓雍错湖面大气湍流特征观测分析   总被引:2,自引:1,他引:1  
沈鹏珂  张雪芹 《湖泊科学》2019,31(1):243-255
湍流运动是大气边界层的本质特征,是地表与大气之间能量和物质交换的主要方式.本文利用2016和2017年4-10月藏南羊卓雍错湖泊涡动观测资料,分析了湖面大气湍流方差和湍流特征量的统计和变化特征.结果表明:(1)不稳定层结下,三维风速分量和超声虚温、水汽密度、CO2密度的无量纲标准差随稳定度变化符合Monin-Obukhov相似理论的"1/3"或"-1/3"次幂律,垂直风速的拟合效果最好;稳定层结下,除CO2密度无量纲标准差与稳定度无明显关系外,其他量基本上满足相似性规律;中性条件下,以上物理量的无量纲标准差分别趋近常数:3.57、3.93、0.77、20.91、6.35和11.96.(2)水平方向平均湍流强度(0.60和0.58)大于垂直方向(0.13),三维方向湍流强度与平均风速的变化呈显著负相关,相关系数分别为-0.39、-0.42和-0.34.(3)湖面湍流动能随风速呈线性增长,增长率达0.45 m/s;近中性层结时湍流动能最大,层结越稳定或不稳定湍流动能均减小.(4)湖泊下午到傍晚动量输送较强,13:00-22:30时间段平均动量通量达0.091 kg/(m·s2);热量输送以潜热为主,潜热通量日平均值(77.3 W/m2)是感热通量(14.6 W/m2)的5.3倍,感热和潜热通量日变化峰值分别出现在5:30(22.4 W/m2)和16:00(106.6 W/m2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号