首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calculation of the equilibrium charge acquired by interstellar grains is given, which takes account of polarization charges that are induced in a grain by incident ions and electrons.Both metal and dielectric grains are considered and photoionization of the latter grains by UV radiation is taken into account where necessary. It is found that the inclusion of the polarization charges in the calculation is only important in gas clouds where the mean charge on a grain is low (<1e); that is, for HI regions and dense molecular clouds. In such clouds, the effect of the polarization charges is to increase the amount of negative charge acquired by a grain. A discussion is given concerning the validity of the classical electrostatic theory employed in the paper for small grains of radius 10–6 cm, and some astrophysical consequences of the modification of the grain charge by polarization effects are considered.  相似文献   

2.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

3.
The equilibrium chemistry of silicon in dense interstellar clouds is discussed in terms of both gas phase and grain surface reactions. Unless the metal depletion is very large, the gas phase scheme tends to over-produce SiO and/or SiS when compared to the observations of Sgr B2. The scheme also predicts SiC to be an abundant form of silicon. There is a great need for relevant laboratory data on the reactions used here—of the 35 rate coefficients adopted in the scheme, only three have been measured in the laboratory. Reactions between positively charged gas phase ions and small grains can lead to the formation of SiO and SiS. This type of reaction seems to offer a simple explanation for the observed differences between sulphur and silicon chemistry in dense clouds.  相似文献   

4.
Dust grains expelled by radiation pressure of stars are charged to potentials in the range 30–40 V in Hi clouds. These grains may be responsible for the following phenomena which are otherwise hardly explicable. (1) A considerable fraction of electrons knocked-out by charged grains of high speeds have energies around 15 eV and produce singly ionized ions but not doubly ionized ones in accord with an ultraviolet observation of interstellar atoms and ions. (2) Transverse momentum transferred to grains by Coulomb scattering of ambient electrons and protons is greater than that by multiple scattering of cosmic ray protons, thus the former being more effective for the grain alignment than the latter. (3) At a shock front charge separation due to a large inertial mass of grains produces an electric field, thus accelerating charged particles and causing a drift of interstellar matter.  相似文献   

5.
This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r) r –4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10–7 cm up tor=10–4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s–1. It is shown that accretion takes place effectively, leading to the formation of interstellar grit, meaning grains of mass 10–8 to 10–7 gm, radius 0.1 mm; and leaving also a population ofr10–6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r) r mean –3 , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr 10–6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.  相似文献   

6.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We study the effect of an imposed magnetic field on the motion of charged dust particles in magnetically active regions of a protoplanetary disc. Assuming a power law structure for the vertical and the toroidal components of the magnetic field for the regions beyond magnetically dead region of the disc, the radial and the vertical velocities of the charged particles, in the asymptotic case of small particles, are calculated analytically. While grains with radii smaller than a critical radius significantly are affected by the magnetic force, motion of the particles with larger radii is independent of the magnetic field. The critical radius depends on the magnetic geometry and the charge of the grains. Assuming that a grain particle has one elementary charge and the physical properties of the disc correspond to a minimum-mass solar nebula, we show that only micron-sized grains are affected by the magnetic force. Also, charge polarity determines direction of the radial velocity. For such small particles, both the radial and the vertical velocities increase due to the magnetic force.  相似文献   

8.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

9.
We present spectropolarimetry of the solid CO feature at 4.67 μm along the line of sight to Elias 16, a field star background to the Taurus dark cloud. A clear increase in polarization is observed across the feature with the peak of polarization shifted in wavelength relative to the peak of absorption. This shows that dust grains in dense, cold environments (temperatures ∼20 K or less) can align and produce polarization by dichroic absorption. For a grain model, consisting of a core with a single mantle, the polarization feature is best modelled by a thick CO mantle, possibly including 10 per cent water-ice, with the volume ratio of mantle to bare grain of ∼5. Radiative torques could be responsible for the grain alignment provided the grain radius is at least 0.5 μm. This would require the grain cores to have a radius of at least 0.3 μm, much larger than grain sizes in the diffuse interstellar medium. Sizes of this order seem reasonable on the basis of independent evidence for grain growth by coagulation, as well as mantle formation, inside dense clouds.  相似文献   

10.
Ampere's law requires that every magnetic field have an associated current. The analysis of magnetic fields in this paper begins with that current in a circular loop and calculates the forces that make the loop evolve. A circular current generates a dipole field; and a second-order, ordinary differential equation represents the evolving magetic field. The theory describes cases where the conductor shrinks as the loop increases in size. The temperature of the conducting ions and electrons then decreases. The theory also describes cases where the conductor grows as the loop grows. Then the conducting particles heat up.Analysis shows that the magnetic clouds in the solar wind belong to the first type. In the provisional model adopted, the Klein-Burlaga clouds at one astronomical unit have a toroidal shape, centered on the sun, with a conductor radius of .125 au, and temperature (same for conducting electrons and protons) of 105 K. After 26 days the toroid has a radius of 7.1 au, the conductor radius is .025 au, and the temperature is 2600 K.  相似文献   

11.
The Earth's middle atmosphere at altitudes of 80-95 km exhibits layered phenomena known as noctilucent clouds and polar mesosphere summer echoes. These structures are believed to be associated with the presence of large quantities of charged dust or aerosol particles. The sign of the charge depends on the material composition of the latter as well as the environment. The grains are normally composed of ice together with possible metallic impurities. Particles of pure ice are always charged negatively, but if the metal content is sufficiently high, they can become positive. The characteristics of self-organized structures on the dust acoustic time scale depend strongly on the sign of the charge, and the structures can appear as either electron (ion) density humps or dips. Such a physical distinction can be used for the identification and diagnostics of noctilucent clouds and polar mesosphere summer echoes.  相似文献   

12.
The chemistry leading to the formation of solid aerosols (tholins) in Titan's atmosphere is simulated by a capacitively coupled plasma in a N2-CH4 gas mixture. The solid grains are produced in volume directly in the gas phase and studied ex-situ by SEM imaging and by light scattering on clouds of particles. The scattered light properties depend on the physical properties of the particles (morphologies, size distribution), as well as on the phase angle and the wavelength of the light. The particles may be aggregated or agglomerated grains. The grains size distribution is studied as a function of plasma parameters such as initial methane concentration introduced into the discharge, gas flow, absorbed RF power and plasma duration. The average grain size increases when the amount of CH4 increases, when the gas flow decreases, and when the plasma duration increases up to a limit for each production condition.For all the samples, the absorption decreases with increasing wavelength in the visible domain. As usually found for irregular particles, the polarization phase curves have a bell-shaped positive branch and a shallow negative branch. The maximum of polarization (Pmax) increases when the average grain size decreases (sub-μm-sized grains). To obtain Pmax values within the range of those measured in Titan's atmosphere; the average grains diameter has to be smaller than 100 nm, in agreement with the space observations results. In the light-scattering experiment, the size of the agglomerates in the clouds is in the 40-80 μm range in equivalent diameter. As a consequence Pmax increases with decreasing wavelength due to the increasing absorption, in agreement with observations of Titan from outside the atmosphere.  相似文献   

13.
Molecular clouds are clumpy on length scales down to the limits of observational resolution. At least some ultracompactHii regions (UCHiiR) may result from the interaction of a young early type star and this type of cloud. The clumps can act as reservoirs of ionized gas distributed within theHii region. These models reproduce the relatively long lifetimes implied by the population statistics of UCHiiR. We present line profile and emission measure plots based on the simplest case where the flow remains supersonic through to a recombination front. The morphology agrees with the shell-like UCHiiR as classified by Churchwell. The predicted line profiles are broad and double peaked with a separation of about 50 km s–1 for the example given.  相似文献   

14.
Several processes have been suggested as ways of returning accreted grain mantles to the gas, thus preventing the total removal of molecules from the gas phase in dark quiescent clouds. We attempt to distinguish between them by considering not only the calculated gas-phase abundances, but also the ratio of the abundances of deuterated species to non-deuterated species. We find that the D/H ratio in molecules is relatively model-independent, but that desorption due to the formation of H2 on grains gives the best overall agreement with the observations.  相似文献   

15.
Dust grains coagulate into larger aggregates in dense gas. This changes their size distribution and possibly affects the thermal evolution of star-forming clouds. We here investigate dust coagulation in collapsing pre-stellar cores with different metallicities by considering the thermal motions of grains. We show that coagulation does occur even at low metallicity  ∼10−6 Z  . However, we also find (i) that the H2 formation rate on dust grains is reduced only after the majority of H2 is formed and (ii) that the dust opacity is modified only after the core becomes optically thick. Therefore, we conclude that the effects of dust coagulation can safely be neglected in discussing the temperature evolution of the pre-stellar cores for any metallicity as long as the grain motions are thermal.  相似文献   

16.
The collisional instability of the drift wave in a multi-component plasma is investigated. It is shown that when the electron and ion density gradients are different, e.g., due to the presence of a static third component or due to neutral drag effects, the drift mode becomes unstable. The instability is caused by the simultaneous action of the electron collisions with all other plasma species and the spatial difference of the density of the plasma components. This instability may be expected as a natural consequence of the stratification of a multi-component plasma placed in an external gravity field where it can operate for any amount of charge on heavy particles. Therefore it could develop in weakly ionized cold interstellar regions for example, when the heavy particles, i.e. charged grains, are a few tens of Å in size, and carry typically ±1,±2 charge. In the solar atmosphere, it may appear in the weakly ionized photospheric layers due to the convective motion of the neutral component.  相似文献   

17.
Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z ∼ 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon since it can result in stellar and planetary formation. Our experiments attempt to simulate this mass-loading as it occurs when a shock passes through interstellar clouds. We drive a strong shock using the Omega laser (∼5kJ)into a foam-filled cylinder with an embedded Al sphere(diameterD=120 μm) simulating an interstellar cloud. The density ratio between Al and foamis∼9. We have previously reported on the interaction between shock and cloud, the ensuing Kelvin-Helmholtz and Widnall instabilities, and the rapid stripping of all mass from the cloud. We now present a theory that explains the rapid mass-stripping. The theory combines (1) the integral momentum equations for a viscous boundary layer, (2) the equations for a potential flow past a sphere, (3) Spalding's law of the wall for turbulent boundary layers, and (4) the skin friction coefficient for a turbulent boundary layer on a flat plate. The theory gives as its final result the mass stripped from a sphere in a turbulent high Reynolds number flow, and it agrees very well with our experimental observations.  相似文献   

19.
Earlier work on the resistance acting on a small sphere moving through a gas is reviewed. A model for the resistance encountered by a sphere, the surface molecules of which are sputtered off during collisions with the gas molecules, is derived and compared with the case of specular reflection. The sputtering model is applied to the case of small 10-μm radius meteoroids entering the Earth's atmosphere. A possible link between the results obtained and the recent discovery of unheated, organic grains at an altitude of 40 km in the Earth's atmosphere is considered.  相似文献   

20.
Terrestrial lightning is generated by the separation of electric charge residing on water-ice particles in clouds, a few kilometers above the electrically conducting surface of the Earth. It is detected optically, electromagnetically, and aurally. The majority of discharges occur within or between clouds with about one third discharging to the surface of the Earth. Upward-propagating lightning also occurs with effects extending into the ionosphere. On Venus, the clouds are close to 50 km above the surface of the planet, where the temperatures and pressures are near those of Earth’s surface. In contrast the atmospheric pressure near the surface of Venus is nearly 100 times that of Earth. Thus, while intra- and inter-cloud lightning is expected to occur in a manner similar to that on Earth, we do not expect discharges from the clouds to the surface to occur. Upward-going lightning may be more frequent at Venus because the ionosphere is closer to the clouds. As at Earth, Venus lightning has been detected optically and electromagnetically from a variety of platforms. We find that some of the observed properties of lightning are different at the two planets. Many of the differences in the electromagnetic waves detected by spacecraft can be attributed to effects during ionospheric propagation to the spacecraft. We review the differences in the ionospheres of Earth and Venus and how they affect observations. We use both the Pioneer Venus electric antenna observations as well as the Venus Express magnetic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号