首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Although megafaunal organisms play an important role in deep benthic ecosystems and contribute significantly to benthic biomass in the Arctic little is known about their temporal dynamics. Here, we assessed the interannual dynamics of megafaunal organisms from the HAUSGARTEN observatory in the Fram Strait, an area where the effects of climatic forcing are particularly evident. We analysed three congruent camera transects taken in 2002, 2004 and 2007. Environmental parameters were measured in order to be able to put our faunal results into an environmental context.Our results indicate that although the densities of megafaunal species show different patterns over time, most exhibit an overall decrease between 2002 and 2007 and total megafaunal densities decreased regularly from 2002 to 2004 to 2007 (12.16±0.96 to 7.41±0.43 ind m−2). This concurs with a steady increase in bottom-water temperatures and a decrease in the total organic content and microbial biomass of surficial sediments at the same time period. Although suspension feeder densities also decreased, predator/scavenger and deposit feeder densities have declined to such an extent that suspension feeders accounted for almost 100% of the megafauna in 2007. It could thus be argued that the trophic diversity at the central HAUSGARTEN station (2500 m) has decreased. Temperature-related changes in the production of the surface layers may lead to changes in the quality and/or quantity of particles exported to the deep seafloor. The densities of deposit feeders (i.e. holothurians) peaked (1.14±0.13 ind m−2) in 2004, the year following the longest ice cover. These results indicate the importance of ice-related export of particles to the deep seafloor and highlight the need for time-series transects, especially in an era when productive marginal ice zones tend to disappear with the receding sea ice. Although there is a general consensus that the Arctic is in a transition towards a warmer state, only continued observation will allow us to assess if the interannual changes observed are a result of decadal cycles related to the Arctic and North Atlantic Oscillation or if they are indicators of long-term change.  相似文献   

2.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   

3.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

4.
Seasonal variations in coccolithophore abundance, chlorophyll, nutrients and production of particulate organic and inorganic carbon (POC and PIC) were determined along a coastal to oceanic east-west transect (Line P) culminating at Ocean Station Papa in the northeastern subarctic Pacific between 1998 and 2000. Offshore stations generally exhibited low seasonality in chlorophyll concentrations, with moderate seasonality in POC production. Near shelf stations showed a similar pattern to offshore stations, but were also characterized by sporadic events of higher POC productivity. During the 1998 El Niño, June was characterized by low chlorophyll and POC productivity along the transect, presumably as a result of depleted surface nitrate. In contrast, during the 1999 La Niña, and in 2000, higher POC productivity and surface nitrate occurred along the transect in June. Chlorophyll and POC productivity were similar in late summer in all 3 years. The coccolithophore population was usually numerically dominated by Emiliania huxleyi, particularly in June. Along the transect, abundance of coccolithophores was much higher in June during the 1998 El Niño (mean of 221 cells ml−1) than in the 1999 La Niña (mean of 40 cells ml−1), with their abundance in late summers of both years being very low. Abundances were even higher along the transect in June and the late summer of 2000 with sporadic ‘blooms’ of >1000 cells ml−1 at some stations (cruise averages 395 and 552 cell ml−1, respectively). Production rates of PIC did not consistently correlate with areas of high coccolithophore abundance. PIC production was high (100-250 mg C m−2 d−1) along the transect during June 1998, and low (1-40 mg C m−2 d−1) during both winters, June 1999 and during late summers of 1998 and 1999. The year 2000 was more complicated, with high rates of PIC production accompanying high abundance of coccolithophores in late summer, but lower rates of PIC production accompanying high coccolithophore numbers in June. Our data suggest that the abundance of coccolithophores and the production rates of PIC in the subarctic are higher than previously thought. Occasional PIC:POC production ratios of 1 or greater in 1998 and 2000 suggest that coccolithophores in this region could have a significant impact on the efficiency of the biological carbon pump.  相似文献   

5.
The influence of a thick layer of oxygen-depleted water (<0.2 ml l−1) on the abundance and distribution of chaetognaths was investigated in the northeastern Arabian Sea (NEAS), a natural oxygen-deficient system in the global ocean. The species and maturity stage-wise distribution of this group were studied at five discrete depths down to 1000 m. A total of 22 species belonging to four genera were observed, and the genus Sagitta dominated, representing 60% (500-1000 m) to 89% (Mixed layer depth) of the total chaetognath population. Based on their vertical distribution limits, four groups were recognised, as follows: I: species abundant in surface water with a maximum distribution limit up to 300 m; II: species confined mainly to deeper waters (>500 m); III: species present throughout the water column (0-1000 m); and IV: species present in most layers, but with a preference for a specific depth stratum. A positive correlation (P<0.01) was observed in the abundance of chaetognaths and their main prey copepods, emphasising the strong trophic relationship between these groups. It was found that the intensely oxygen-deficient waters of the NEAS play a crucial role in the vertical distribution and abundance of chaetognath species of all four genera. This report presents information on the maturity stages and ontogenetic migration of this important planktonic group in relation to the oxygen-depleted water in the study region for the first time. The results obtained are also important for understanding the biological processes associated with a major oxygen minimum zone (OMZ) in the global ocean.  相似文献   

6.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

7.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

8.
Spring diatom blooms are important for sequestering atmospheric CO2 below the permanent thermocline in the form of particulate organic carbon (POC). We measured downward POC flux during a sub-polar North Atlantic spring bloom at 100 m using thorium-234 (234Th) disequilibria, and below 100 m using neutrally buoyant drifting sediment traps. The cruise followed a Lagrangian float, and a pronounced diatom bloom occurred in a 600 km2 area around the float. Particle flux was low during the first three weeks of the bloom, between 10 and 30 mg POC m−2 d−1. Then, nearly 20 days after the bloom had started, export as diagnosed from 234Th rose to 360-620 mg POC m−2 d−1, co-incident with silicate depletion in the surface mixed layer. Sediment traps at 600 and 750 m depth collected 160 and 150 mg POC m−2 d−1, with a settled volume of particles of 1000-1500 mL m−2 d−1. This implies that 25-43% of the 100 m POC export sank below 750 m. The sinking particles were ungrazed diatom aggregates that contained transparent exopolymer particles (TEP). We conclude that diatom blooms can lead to substantial particle export that is transferred efficiently through the mesopelagic. We also present an improved method of calibrating the Alcian Blue solution against Gum Xanthan for TEP measurements.  相似文献   

9.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

10.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

11.
This study examines species composition and abundance of appendicularians in the northwestern coastal waters of South China Sea based on in situ data obtained by 169 μm planktonic nets during summer and winter, and discusses the influence of environmental factors on their distribution and assemblages. A total of 19 appendicularian species (including one unidentified species) was collected. Species richness is higher in summer than in winter, and it increases from inshore to offshore waters. Average abundance of appendicularians is 103.1 (±198.1) and 54.6 (±111.1) ind. m−3 in summer and winter, respectively. The abundance distribution of appendicularians is generally high around inshore waters during summer and winter, and with a higher abundance assemblage along the eastern coast from Leizhou Peninsula to Hainan Island, especially at the eastern mouth of Qiongzhou Strait in summer. Oikopleurids accounted for 97.5% and 99.6% of total appendicularians abundance in summer and winter, and the region of high values was the same to that of total appendicularians abundance. Oikopleura longicauda, Oikopleura rufescens, and Oikopleura fusiformis are dominant species during summer and winter. Results showed that spatial distribution of species richness of appendicularians is considered to be the result of physical factors such as temperature and salinity in summer and winter, while variations in abundance of appendicularians are affected by the combination of physical and biological factors. In particular, variations of appendicularians abundance are affected by food availability in summer.  相似文献   

12.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

13.
The Bay of Bengal remains one of the least studied of the world's oxygen minimum zones (OMZs). Here we offer a detailed investigation of the macrobenthos relative to oxygen minimum zone [OMZ – DO (dissolved oxygen), concentration <0.5 ml·1?1] at 110 stations off the North East Indian margin (160 and 200 N) featuring coastal, shelf and slope settings (10–1004 m). Macrobenthos (>0.5 mm) composition, abundance and diversity were studied in relation to variations in depth, dissolved oxygen, sediment texture and organic carbon. Using multivariate procedures powered by SIMPROF analysis we identified distinct OMZ core sites (depth 150–280 m; DO 0.37 ml·1?1) that exhibited dense populations of surface‐feeding polychaetes (mean 2188 ind. m?2) represented by spionids and cossurids (96%). Molluscs and crustaceans were poorly represented except for ampeliscid amphipods. The lower OMZ sites (DO > 0.55 ml·l?1) supported a different assemblage of polychaetes (cirratulids, amphinomids, eunicids, orbinids, paraonids), crustaceans and molluscs, albeit with low population densities (mean 343 ind. m?2). Species richness [E(S100)], diversity (Margalef d; H’) and evenness (J’) were lower and dominance was higher within the OMZ core region. Multiple regression analysis showed that a combination of sand, clay, organic carbon, and dissolved oxygen explained 62–78% of the observed variance in macrobenthos species richness and diversity: E(S100) and H’. For polychaetes, clay and oxygen proved important. At low oxygen sites (DO <1 ml·l?1), depth accounted for most variance. Residual analysis (after removing depth effects) revealed that dissolved oxygen and sediment organic matter influenced 50–62% of residual variation in E(S100), H’ and d for total macrofauna. Of this, oxygen alone influenced up to ~50–62%. When only polychaetes were evaluated, oxygen and organic matter explained up to 58–63%. For low oxygen sites, organic matter alone had the explanatory power when dominance among polychaetes was considered. Overall, macrobenthic patterns in the Bay of Bengal were consistent with those reported for other upwelling margins. However, the compression of faunal gradients at shallower depths was most similar to the Chile/Peru margin, and different from the Arabian Sea, where the depth range of the OMZ is two times greater. The Bay of Bengal patterns may take on added significance as OMZs shoal globally.  相似文献   

14.
This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300–1000 m) through the lower oxygen gradient (oxycline) (0.02 to 0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions.Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.  相似文献   

15.
Because the marine picoplanktonic communities are made up of phylogenetically different microbial groups, the re-evaluation of key processes such as bacterial secondary production (BSP) has become an important contemporary issue. The difficulty of differentiating the metabolic processes of Bacteria from the rest of the microorganisms in the water column (i.e., Archaea and Eukarya) has made it difficult to estimate in situ BSP. This work presents the seasonal variability of the prokaryote secondary production (PSP) measured by the incorporation of 14C-leucine in the oxygen minimum zone (OMZ) off central-southern Chile. The BSP and potential archaeal secondary production (PASP) were determined through the combined use of 14C-leucine and N1-guanyl-1, 7-diaminoheptane (GC7), an efficient inhibitor of archaeal and eukaryote cell growth. BSP accounted for the majority of the PSP (total average, 59 ± 7.5%); maximum values were ∼600 μg C m−3 h−1 and, on several dates, BSP represented 100% of the PSP. Similarly, PASP was also an important fraction of the PSP (total average, 42.4 ± 8.5%), although with levels that ranged from not detectable (on given dates) to levels that represented up to ∼97% of PSP (winter 2003). Our results showed that both Bacteria and Archaea accounted for almost equal portions of the prokaryote heterotrophic metabolism in the OMZ, and that PASP is notoriously enhanced through temporal pulses of heterotrophy. This indicates that, at least in marine systems with high abundance of Archaea (e.g., mesopelagic realm), the secondary production obtained through methods measuring the uptake of radiolabeled substrates should be considered as PSP and not as BSP. If the latter is the target measurement, then the use of an inhibitor of both archaeal and eukaryote cell growth such as GC7 is recommended.  相似文献   

16.
The oceanographic processes involved in marine fronts and their effects on the plankton are still a challenge in the understanding of marine ecosystems. This study examines the relationship of the three-dimensional distribution of larval fish assemblages (LFAs) with hydrography on a tidal-mixing surface thermal/chlorophyll front in the highly productive midriff archipelago of the Gulf of California during summer (August, 2005). Zooplankton samples were obtained on both sides of the front with an opening–closing net (505 μm) in 50-m strata from the surface to 200 m depth. The Bray–Curtis dissimilarity index defined three strata groups with different LFAs. On the cool side of the front, characterized by high chlorophyll, salinity, and dissolved oxygen, an LFA with the lowest larval abundance (97 larvae/10 m2) and low taxa number (44) was defined. On the warm side of the front, where the lowest concentrations of surface dissolved oxygen and surface chlorophyll were recorded, an LFA was defined on the pycnocline, with the highest mean larval abundance and number of taxa (927 larvae/10 m2 and 109 taxa); it was composed of epipelagic, mesopelagic, and demersal species. Also on the warm side of the front, but below the pycnocline, an LFA was observed with medium larval abundance and taxa number (126 larvae/10 m2 and 28 taxa), formed by mesopelagic species. This assemblage was absent from the cool area to the northwest of the front, mainly from 150 to 50 m depth, where maximum-salinity water from the Northern Gulf was found. We conclude that the surface thermal/chlorophyll front had a profound effect on LFAs distribution in the surface layer, while the southward intrusion of maximum-salinity water from the Northern Gulf bounded the LFAs distribution in the deeper layer under the pycnocline. Therefore, in addition to the surface thermal/chlorophyll front, the hydrographic processes associated with the Gulf's seasonal and thermohaline circulation affect the LFAs three-dimensional distribution. Similar relationships may occur in other ocean ecosystems.  相似文献   

17.
Fifty years of measurements at Ocean Station Papa (OSP, 50°N, 145°W) show trends in the interior waters of the subarctic Pacific that are both impacted by short term (few years to bi-decadal) atmospheric or ocean circulation oscillations and by persistent climate trends. Between 1956 and 2006, waters below the ocean mixed layer to a depth of at least 1000 m have been warming and losing oxygen. On density surfaces found in the depth range 100-400 m (σθ = 26.3-27.0), the ocean is warming at 0.005-0.012 °C y−1, whereas oxygen is declining at 0.39-0.70 μmol kg−1 y−1 or at an integrated rate of 123 mmol m−2 y−1 (decrease of 22% over 50 years). During this time, the hypoxic boundary (defined as 60 μmol O2 kg−1) has shoaled from ∼400 to 300 m. In the Alaska Gyre, the 26.2 isopycnal occasionally ventilates, whereas at OSP 26.0σθ has not been seen at the ocean surface since 1971 as the upper ocean continues to stratify. To interpret the 50 year record at OSP, the isopycnal transport of oxygenated waters within the interior of the subarctic Pacific is assessed by using a slightly modified “NO” parameter [Broecker, W., 1974. “NO” a conservative water-mass tracer. Earth and Planetary Science Letters 23, 100-107]. The highest nitrate-oxygen signature in interior waters of the North Pacific is found in the Bering Sea Gyre, Western Subarctic Gyre and East Kamchatka Current region as a consequence of winter mixing to the ∼26.6 isopycnal. By mixing with low NO waters found in the subtropics and Okhotsk Sea, this signature is diluted as waters flow eastward across the Pacific. Evidence of low NO waters flowing north from California is seen along the coasts of British Columbia and SE Alaska. Oxygen in the subsurface waters of the Alaskan Gyre was supplied ∼60% by subarctic and 40% by subtropical waters during WOCE surveys, whereas such estimates are shown to periodically vary by 20% at OSP. Other features discernable in the OSP data include periods of increased ventilation of deeper isopycnals on an ∼18 year cycle and strong, short term (few month) variability caused by passing mesoscale eddies. The potential impacts of declining oxygen on coastal ecosystems are discussed.  相似文献   

18.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   

19.
Mesozooplankton composition and distribution were investigated by Juday net hauls in the Pechora Sea (south-eastern Barents Sea) in July 2001. A total of 66 taxa were identified. The total mesozooplankton abundance varied between 2416 ind m−2 in the northern part and 1458?935 ind m−2 in the south. The biomass ranged between 81 and 19?078 mg DW m−2. Three groups differed greatly in composition, abundance and biomass as delineated by cluster analysis. Copepod species Calanus finmarchicus, Pseudocalanus species and Limnocalanus macrurus dominated in terms of the total biomass within each single cluster. There were significant Spearman rank correlations between mesozooplankton abundance and oceanographic variables, and phytoplankton concentration. Salinity was the main factor affecting the mesozooplankton distribution in the coastal waters, while temperature had greater influence on the abundance and biomass in the central and northern parts. The mean mesozooplankton biomass in the region was higher in comparison with some previous investigations probably due to higher water temperature in summer 2001.  相似文献   

20.
The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates. Using 7Be and 234ThXS, the sediment-mixing coefficient (Db) was 4.3 ± 1.8 cm2 y−1, a value that lies at the lower limit for marine environments, indicating that mixing was not important in these sediments at this time. Sediment accumulation rates (Sa), estimated using 137Cs and 210PbXS, were 0.16 ± 0.02 g cm−2 y−1. The supply rate of organic carbon to the sediment-water interface was 30 ± 3.9 mmol C m−2 d−1, of which ∼10% or 2.9 ± 0.44 mmol C m−2 d−1was lost from the system through burial below the 1-cm thick surface mixed layer. Measured fluxes of O2 were 26 ± 3.8 mmol m−2 d−1 and equated to a carbon oxidation rate of 20 ± 3.3 mmol C m−2 d−1, which is an upper limit due to the potential for oxidation of additional reduced species. Using organic carbon gradients in the surface mixed layer, carbon oxidation was estimated at 2.6 ± 1.1 mmol C m−2 d−1. Independent estimates made using pore water concentration gradients of ammonium and C:N stoichiometry, equaled 2.8 ± 0.46 mmol C m−2 d−1. The flux of DOC out of the sediments (DOCefflux) was 5.6 ± 1.3 mmol C m−2 d−1. In general, while mass balance was achieved indicating the sediments were at steady state during this time, changes in environmental conditions within the bay and the surrounding area, mean this conclusion might not always hold. These results show that the majority of carbon oxidation occurred at the sediment-water interface, via O2 reduction. This likely results from the high frequency of sediment resuspension events combined with the shallow sediment mixing zone, leaving anaerobic oxidants responsible for only ∼10–15% of the carbon oxidized in these sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号