首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y−1 in Boston Harbor to declines as large as −33% y−1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from −0.06% y−1 to as high as −14.81% y−1. The median rate of decline by region ranged from −2.21% y−1 to −3.51% y−1 and was slightly less than the recently reported global rate of decline for seagrasses (−3.7% y−1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers.  相似文献   

2.
The Laguna Madre of South Texas is a shallow coastal lagoon whose dominant primary producers shifted from seagrasses to phytoplankton with the onset of the Texas brown tide, which persisted from 1990 through 1997. Acartia tonsa is the dominant component of the mesozooplankton and forms an important link in both the phytoplankton and detritus-based pelagic food webs. Stable carbon isotope ratios of A. tonsa, as well as the two major primary producers: phytoplankton (as particulate organic carbon) and seagrasses, were measured from March 1989 to October 1991. Zooplankton samples were collected at four locations in the Laguna Madre: two in shallow water (c. 1 m) over seagrass beds and two in slightly deeper water (c. 2–3 m) over a muddy bottom in a secondary bay without seagrasses. We found seasonal trends in the isotopic composition of A. tonsa collected within both habitats as well as distinct differences between the average {ie995-1} values of individuals collected in the two regions. Isotopic ratios of animals collected during the summer months were generally 4–8‰ enriched in 13C compared with those collected in the winter, at all stations. A. tonsa collected over seagrass beds were 2–5‰ more enriched in 13C than those collected over muddy bottoms. These observations suggest carbon derived from seagrasses can be an important source of nutrition for these copepods in summer, especially for copepods living over seagrass beds. The effects of the persistent brown tide decreased the contribution of seagrasses as a carbon source for A. tonsa during the summer of 1991. The pathway by which seagrass carbon enters the diet of A. tonsa is unclear, but the two pathways considered most likely are through copepods feeding on microzooplankton that have fed on bacteria nourished on seagrass carbon, or by copepods feeding directly on particles of seagrass detritus.  相似文献   

3.
The influences of suspended particles (SPs) on NH4 + adsorption and nitritation occurring in the water system of the Three Gorges Reservoir (TGR) were evaluated in this study. The results indicated that the adsorption of NH4 + was significantly affected by the SPs concentration under the conditions typically present in the TGR. The amount of ammonia adsorbed per unit weight of suspended particles was inverse proportional to the concentration of suspended particles. However, the influences of the particle size and the organic matter concentration existing in SPs were insignificant under the experimental conditions. The effects of suspended particles on nitritation were determined by the use of ammonia-oxidizing bacteria (AOB) strain SW16, identified as Nitrosomonas nitrosa, which was isolated from sediment samples of the TGR. Suspended particle concentration in water–sediment solution played an important role in the nitritation process. The rate of nitritation enhanced with the increase of the suspended particle concentration. It was found that the critical factor controlling ammonia oxidizing rate was the AOB biomass resulting from the AOB growth rate. Moreover, results demonstrated that both particle size and organic matter content showed little effect on the nitritation process under the experimental conditions.  相似文献   

4.
This study investigated macroinvertebrate community composition in seagrass beds at a range of spatial scales, with an emphasis on the transition between vegetated and unvegetated sediment. At four intertidal sites in three New Zealand estuaries (Whangamata, Wharekawa, and Whangapoua Harbours), a large continuous bed of seagrass (Zostera capricorni) was selected with adjacent unvegetated sediment. Macroinvertebrate community composition and biomass, as well as sediment characteristics, were determined at sampling locations 1 and 50 m inside seagrass beds, and 1, 10, and 50 m outside seagrass beds. Analysis of univariate measures of community composition (total abundance, number of species, and diversity) and total biomass indicated significant differences among sites and sampling locations, but contrary to many previous studies these measures were not higher inside than outside the seagrass beds. Multivariate analysis indicated that sites with high seagrass biomass supported a similar community composition. The remaining sampling locations were clustered by site, but there were also significant differences in community composition among sampling locations within a site. There were distinctive communities at the edge of seagrass beds at sites with high seagrass biomass, and evidence that the effects of seagrass beds may extend into the unvegetated sediment. At the low seagrass biomass site there was no evidence of any edge effects, although community composition differed inside and outside the bed. Differences in community composition were driven primarily by small changes in the relative abundance of the dominant taxa. At high seagrass biomass sites the absence of deep-burrowing polychaetes and low numbers of bivalves suggests that one possible mechanism underlying the observed variation in community composition was inhibition by the dense root-rhizome mat. The results of this study emphasize the need to consider the linkages between habitats in heterogeneous estuarine landscapes and how those linkages vary among sites, if the structure and functioning of macroinvertebrate communities in seagrass habitats are to be understood.  相似文献   

5.
Recolonization dynamics from disturbance on a Philippine mixed seagrass meadow, containing species spanning more than 10-fold in rhizome elongation rates and reproductive effort, was examined by following the recovery of a 1,200 m2 gap over 2.5 yr. The objective was to assess the contribution of contrasting species to the recovery process and to evaluate the importance of sexual versus vegetative colonization. Large, slow-growing species,Thalassia hemprichii andEnhalus acoroides, that produce large, broadly-dispersed seeds dominated sexual colonization with a total of 2,643 and 210 seedlings, respectively, recruiting to the area. Despite very rapid turnover of sexual recruits, the high frequency of seedling establishment ensured successful development of new patches in areas devoid of vegetation, leading to a scattered and evenly distributed presence of vegetation inside the gap. The small seagrass speciesCymodocea rotundata andHalodule uninervis, characterized by fast rhizome elongation rates but low reproductive output and limited seed dispersal, were the major contributors to the overall 450 m2 increase in vegetation cover through fast lateral extension (144±6 cm yr−1) from meadow edge and surviving patches, forming a compact vegetation cover in one edge of the denuded area. We conclude that contrasting recruitment strategies in the mixed-species seagrass community examined have implications for colonization potential at different spatial scales. Fast clonal growth is only an efficient mechanism for colonization of disturbances within established meadows (small gaps), whereas the large species, which combined high reproductive output with high seed dispersal capacity, may act to accelerate the colonization process in large gaps or distant from established meadows.  相似文献   

6.
The rotational behaviour of a rigid particle embedded in a linear viscous matrix undergoing cylindrical simple shear (Couette) flow was studied in 2D rock-analogue experiments. The influence of particle shape (elliptical vs. monoclinic), aspect ratio and the nature of the matrix/particle interface (lubricated vs. unlubricated) was investigated. Both matrix (PDMS) and lubricant (liquid soap) were linear viscous, with a viscosity ratio of ca. 104. Without lubricant, the rotational behaviour of all particles closely approximates the Jeffery theory. Lubricated monoclinic particles with the long diagonal initially parallel to the shear direction show back rotation and approach a stable position. Lubricated elliptical particles initially parallel to the shear direction also show back rotation but only transiently stabilize. Weak planar zones in the matrix adjacent to unlubricated elliptical particles do not induce backward rotation. In general for elliptical particles, rotation rate as a function of orientation depends on axial ratio and thickness of the lubricant mantle. For thick mantles (initially >10% of the volume of the particle), rotation rates are faster than Jeffery theory. For very thin mantles they are markedly slower compared with thick mantles, particularly when the long axis is nearly parallel to the shear direction. Rotation rates are never strictly zero, so true stabilization does not occur. However, for more elongate particles (axial RATIO=6) rotation rates are so slow that a very strong shape preferred orientation would develop in a lubricated elliptical particle population. In experiments, the volume of lubricant is constant and the thickness adjacent to the long side of the particle progressively decreases with increasing strain. In natural examples of porphyroclast systems, the weak mantle continually develops by recrystallization and/or cataclasis of the rigid clast core and a steady state between production and thinning could be attained, potentially leading to true stabilization for particles with a high axial ratio.  相似文献   

7.
We examined the rhizosphere structure of 14 seagrass meadows (seven mixed, three Enhalus acoroides, two Zostera japonica, one Thalassia hemprichii, and one Halophila ovalis) in the Philippines and Vietnam and tested their effect on sediment redox potential by comparing the redox potential in vegetated vs unvegetated sediments. The effect of seagrass photosynthesis on sediment redox potential was tested in an E. acoroides meadow during a short-term (2-day) clipping experiment. In all the meadows, the centroidal depth (i.e., depth comprising 50%) of seagrass belowground biomass was within the top 15 cm sediment layer. Redox potentials in vegetated sediments tended to be higher than those in adjacent unvegetated ones; sediment redox potential anomaly ranged from −61 to 133 mV across the meadows. The centroidal depths of positive redox potential anomaly and seagrass root biomass were significantly correlated across the meadows investigated (type II regression analysis, slope = 0.90, lower confidence limit [CL] = 0.42 upper CL = 1.82, R 2 = 0.59, p < 0.01). Experimental removal of E. acoroides leaves resulted in a decrease in rhizosphere redox potential by 20 mV, further confirming the positive effect of seagrass roots and rhizomes on sediment redox potential and, thus, the general conditions for microbial processes in the coastal zone.  相似文献   

8.
The fauna of seagrass-covered mud banks in Florida Bay, documented in the mid 1980s prior to recent seagrass die-off, phytoplankton blooms, and other ecosystem changes, was reexamined in the mid 1990s for faunal changes that might be associated with environmental perturbations. During both decades, decapod crustaceans and fishes were collected with 1-m2 throw traps from seagrass beds at six sites that differ in the amount of freshwater and/or marine influence and in seagrass community metrics. The most common faunal changes were declines in seagrass-canopydwelling forms and increases in benthic forms. At three sites with relatively lush seagrass meadows, above-ground seagrass standing crop declined and abundance of the benthic predatory fishOpsanus beta increased. The degree of faunal change among these sites appeared to be related either to salinity variability or to the degree of exposure to the ecosystem changes that have taken place in Florida Bay. At two sites with poorly developed seagrass meadows, seagrass standing crop and canopy height did not change significantly between decades, but there was an increase in shoot density and total leaf area. The animal communities at these sites were characterized by significant increases in the abundance of benthic crustaceans. At the site on the edge of Rankin Lake, the basin where seagrass die-off was first observed in Florida Bay during 1987, seagrass standing crop, canopy height, shoot density, and leaf area declined significantly between decades, but species richness of both crustaceans and fishes increased. The abundance of canopy-dwelling crustaceans and fishes declined markedly at this site, whereas the abundance of benthic forms less dependent on seagrass cover generally increased. In retrospect, we believe the fauma at this site during the 1980s, characterized by high productivity but few species, was already showing signs of the stresses that led to the seagrass die-off that began in 1987.  相似文献   

9.
We explain a new method of quantifying seagrass cover and describing seagrass species composition during fisheries-independent monitoring. This new method is similar to a point-intercept method developed to estimate arboreal crown cover, but it uses an aquascope designed for shallow water. The method does not require a diver. Seagrass cover (cover ratio) distinguished different percentage cover categories in 0.25-m2 seagrass plots. Estimates of species composition determined by using the new method were most similar to those obtained by using estimates of aboveground biomass. Within each 141-m2 area sampled with a 21.3-m fish seine, we accurately estimated seagrass cover ratio and species composition with six observations that typically required less than 6 total minutes. Within such areas, 42 trials were conducted to evaluate the precision with which different observers estimated seagrass cover ratio and species composition. In 98% of the trials, observers attained statistically similar estimates of cover ratio, and in 100% of the trials in areas with multiple seagrass species, observers attained statistically similar estimates of species composition. We conclude that the new method provided efficient and reasonably accurate means to quantify seagrass cover and species composition.  相似文献   

10.
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone groundwaters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems (receiving waters of nutrient inputs), seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems compared to the other ecosystems, while dissolved inorganic nitrogen (DIN; NH4 + and NO3 ?) a secondary limiting nutrient, was elevated both in canal systems and seagrass meadows. SRP and NH4 + concentrations decreased to low concentrations within approximately 1 km and 3 km from land, respectively. DIN and SRP accounted for their greatest contribution (up to 30%) of total N and P pools in canals, compared to dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) that dominated (up to 68%) the total N and P pools at the offshore bank reefs. Particulate N and P fractions were also elevated (up to 48%) in canals and nearshore seagrass meadows, indicating rapid biological uptake of DIN and SRP into organic particles. Chlorophylla and turbidity were also elevated in canal systems and seagrass meadows; chlorophylla was maximal during summer when maximum watershed nutrient input occurs, whereas turbidity was maximal during winter due to seasonally maximum wind conditions and sediment resuspension. DO was negatively correlated with NH4 + and SRP; hypoxia (DO<2.5 mg l?1) frequently occurred in nutrient-enriched canal systems and seagrass meadows, especially during the warm summer months. These findings correlate with recent (<5 years) observations of increasing algal blooms, seagrass epiphytization and die-off, and loss of coral cover on patch and bank reef ecosystems, suggesting that nearshore waters of the Florida Keys have entered a stage of critical eutrophication.  相似文献   

11.
A case of new particle formation observed during dissipation stage of a thunderstorm at a tropical station, Pune, India on 3 June 2008 is reported. The flash rate and rainfall intensity increased as high as 110 flashes per 5 minutes and 150 mm hour − 1 respectively during the active stage of thunderstorm, and then gradually decreased during the dissipation stage. The number concentration of particles in the size range of 10–100 nm sharply increased from 350 particles cm − 3 to ∼8000 particles cm − 3 during the dissipation stage of a thunderstorm and grew to larger diameter subsequently. Observations suggest that the atmospheric conditions such as (i) reduced background aerosol concentration after heavy rain, (ii) high humidity condition, and (iii) increased ion concentration during the dissipation stage by corona discharges, favoured generation of new particles by ion-induced nucleation (IIN). Observations also suggest that generation of unipolar ions by corona discharges may be more favourable for IIN and subsequent growth of the particles.  相似文献   

12.
We detected additional CAI-like material in STARDUST mission samples of comet 81P/Wild 2. Two highly refractory cometary dust fragments were identified in the impact track 110 [C2012, 0, 110, 0, 0] by applying high resolution synchrotron induced confocal and conventional XRF analysis (HR SR-XRF). The use of a polycapillary lens in front of the detector for confocal spectroscopy dramatically improves the fidelity of particle measurements by removing contribution from the surrounding aerogel. The high spatial resolution (300 × 300 nm2; 300 × 1000 nm2) obtained allowed the detailed non-destructive in situ (trapped in aerogel) study of impacted grains at the sub-μm level.For the two largest particles of the track, the terminal particle and a second particle along the impact track, Ca concentration is up to 30 times higher than CI and Ti is enriched by a factor of 2 compared to CI. High resolution (HR) SR-XRF mapping also reveals that the highest concentrations of Ca, Ti, Fe (and Ni) measured within each grain belongs to different areas of the respective maps which indicate that the particles are composed of several chemically diverse mineral phases. This is in agreement with the finding of a complex phase assemblage of highly refractory minerals in the first ever detected Stardust mission CAI grain “Inti” of Track 25.Principle component analysis (PCA) is a powerful tool for extracting the dominant mineral components and was applied to the two grains indicating that regions in the terminal particle and the second particle are consistent with anorthite or grossite and gehlenite, monticellite or Dmitryivanovite (CaAl2O4), respectively.Our new findings demonstrate that the HR SR-XRF with confocal geometry and PCA analysis is capable of identifying CAI-like fragments without the need to extract particles from the aerogel matrix which is a time-consuming, complex and destructive process.Furthermore, the detection of new CAI-like fragments in the coma dust of comet 81P/Wild 2 strengthens the observation that strong mixing effects and, therefore, mass transport before or during comet formation must have occurred at least up to the region where Kuiper Belt comets formed (30 AU).  相似文献   

13.
In many areas of the North American mid-Atlantic coast, seagrass beds are either in decline or have disappeared due, in part, to high turbidity that reduces the light reaching the plant surface. Because of this reduction in the areal extent of seagrass beds there has been a concomitant diminishment in dampening of water movement (waves and currents) and sediment stabilization. Due to ongoing declines in stocks of suspension-feeding eastern oysters (Crassostrea virginica) in the same region, their feeding activity, which normally serves to improve water clarity, has been sharply reduced. We developed and parameterized a simple model to calculate how changes in the balance between sediment sources (wave-induced resuspension) and sinks (bivalve filtration, sedimentation within seagrass beds) regulate turbidity. Changes in turbidity were used to predict the light available for seagrass photosynthesis and the amount of carbon available for shoot growth. We parameterized this model using published observations and data collected specifically for this purpose. The model predicted that when sediments were resuspended, the presence of even quite modest levels of eastern oysters (25 g dry tissue weight m?2) distributed uniformly throughout the modeled domain, reduced suspended sediment concentrations by nearly an order of magnitude. This increased water clarity, the depth to which seagrasses were predicted to grow. Because hard clams (Mercenaria mercenaria) had a much lower weight-specific filtration rate than eastern oysters; their influence on reducing turbidity was much less than oysters. Seagrasses, once established with sufficiently high densities (>1,000 shoots m?2), damped waves, thereby reducing sediment resuspension and improving light conditions. This stabilizing effect was minor compared to the influence of uniformly distributed eastern oysters on water clarity. Our model predicted that restoration of eastern oysters has the potential to reduce turbidity in shallow estuaries, such as Chesapeake Bay, and facilitate ongoing efforts to restore seagrasses. This model included several simplifiying assumptions, including that oysters were uniformly distributed rather than aggregated into offshore reefs and that oyster feces were not resuspended.  相似文献   

14.
Research on recycling waste printed circuit boards is at the forefront of preventing environmental pollution and finding ways to recycle resources. A wet process for reclaiming metals from printed circuit boards applying a tapered diameter separation bed is described, and the separation mechanism of the device is proposed. The motion of a particle in the tapered diameter fluid flow field and particle separation within this field were studied. As the material passes through the fluid field, along with the water, differences in particle density, granularity, and shape cause particles to follow at different trajectories. A tapered diameter separation bed was used to process 1?C0.074?mm-sized crushed material from discarded printed circuit boards. The separation efficiency of 91.77?% and the recovery rate of 95.79?% for recovered metal were achieved with a discharge water flow rate of 4.5m3/h, a material feed rate of 300?g/min, and an obliquity of 30°. For ?0.074?mm printed circuit boards, the metal recovery is 93.42?% and the separation efficiency is 77.63?% when the water discharge is 2?m3/h, the obliquity is 35o, and the material feed rate is 450?g/min. The superfine products in a size range of ?0.074?mm can be recovered effectively under suitable operating condition using the tapered diameter separation bed. It indicates that the lower separation limit of the tapered diameter separation bed can be close to zero. The technique will prevent environmental pollution from waste printed circuit boards and allow efficient recovery.  相似文献   

15.
Total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) loadings [log (kg ha−1 yr−1)] were regressed against seagrass depth limits (percent of depth-limit targets) to back-predict the load limits or allocations (kg ha−1 yr−1 or kg yr−1) necessary to meet targeted seagrass depth limits in the Indian River and Banana River (IRBR) lagoons, Florida. Because the load allocations can be applied as total maximum daily loads (TMDL) for the IRBR (U.S. Environmental Protection Agency mandate), the method and results are developed and presented toward that end. The regression analyses indicate that the range of surface-discharge load limits (nonpoint + point source), per watershed area, required to achieve the desired depth limits for seagrass in the IRBR are approximately 2.4–3.2 kg ha−1 yr−1 TN, 0.41–0.64 kg ha−1 yr−1 TP, and 48–64 kg ha−1 yr−1 TSS. This simple regression method may have application to other shallow estuarine lagoons or bays where seagrass growth is limited by light and water transparency, water transparency is strongly affected by watershed pollutant loadings, water residence times are sufficiently long to allow seagrass coverage to respond to and covary with total load inputs, and multiyear monitoring has yielded sufficient variability in both pollutant loadings and seagrass coverages to develop a statistically meaningful relationship.  相似文献   

16.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   

17.
We examined the effect of nutrients and grazers on Thalassia testudinum in Jobos Bay, Puerto Rico by fertilizing sediment and manipulating grazer abundances. Bottom-up effects were variable: Added nutrients did not increase seagrass aboveground biomass, but decreased belowground biomass—perhaps as a result of less biomass being allocated to belowground structures in response to greater nutrient supply in porewater. Experimental fencing of 1.5 × 1.5 m plots provided shelter that attracted large aggregations of fish, including seagrass herbivores. Seagrass biomass and shoot density decreased with increasing abundance of herbivorous fish, indicating a significant top-down effect. There were interactions between nutrient supply, provision of shelter, and grazing pressure. Fertilization enhanced seagrass %N; however, %N also increased in unfertilized plots that were fenced, most likely due to uptake of N excreted from the large numbers of fish associated with the fences. Only plots where shelter was provided and fertilizer was applied to sediments exhibited evidence of heavy grazing, reducing both seagrass cover and aboveground biomass. In the unfertilized fenced plots, signs of grazing were fewer despite large abundances of fish and enhanced nutritional quality of seagrass leaves. This suggests the possibility that high nutrient availability in sediments lowered concentrations of chemical defense compounds in the seagrass and that cues other than %N may have been involved in stimulating grazing. This study highlights the complexity of bottom-up and top-down interactions in seagrass systems and the important role of refuge availability in shaping the relative strengths of these controls.  相似文献   

18.
The rate of extraterrestrial accretion for particles in the size range 0.45 μm to ∼20 μm was determined from dust concentrates extracted from Greenland Ice Sheet Project 2 (GISP2) ice core samples. Using instrumental neutron activation analysis (INAA), we determined the iridium (Ir) content of the dust. Following a core-specific correction for terrestrial Ir and assuming a chondritic Ir abundance of 500 ppb, we measure an average accretion rate for 0.45 μm to ∼20 μm particles over the entire Earth of 0.22 (± 0.11) × 109 g/yr (kton/yr) for 317 years of ice through the interval 6 to 20 ka. This is consistent with the interplanetary dust accretion rate of 0.17 (± 0.08) x 109 g/yr that we derive from published 3He data for the GISP2 core. Accounting for particles that are larger and smaller than those detected by or experiment, our best estimate of the total accretion rate (including particle sizes up to about 4 cm in diameter) is 2.5 × 109 g/yr. The uncertainty in this estimate is dominated by statistical fluctuations in the number of particles expected to end up in the ice core and not by measurement error. Based on Monte Carlo simulations, we estimate the upper limit for total extraterrestrial accretion to Earth of 6.25 × 109 g/yr (95% confidence level). This accretion rate is consistent with some estimates from micrometeorite concentrations in polar ice, estimates from ground-based radar studies, and with accretion estimates of 3He-bearing interplanetary dust particles, assuming that 3He is correlated with particle surface area. It is, however, lower than estimates based on platinum group element studies of marine sediments. The conflict may indicate systematic errors with either the marine or the non-marine samples, departures from the assumed particle spectrum of Grün and coauthors, or time-variable accretion rates, with the early Holocene period being characterized by low levels of accretion.  相似文献   

19.
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >7.5% of surface irradiance reached the plants and where optical properties were not dominated by scattering. Although the prevention of eutrophication and nuisance algal blooms may be necessary for preserving seagrass meadows in this system, our observations and model calculations indicate that nutrient control alone may be insufficient to permit seagrass recolonization if optical properties are dominated by particulate scattering from resuspended sediments.  相似文献   

20.
Grazing by small epifauna on live seagrass leaves was formerly viewed as unimportant in controlling plant biomass and growth, instead researchers focused on the indirect benefits of small invertebrates that crop algal competitors. Recent evidence shows that the emerald nerite Smaragdia viridis preferentially ingests seagrass leaf tissue. In contrast, the button snail Modulus modulus feeds on epiphytes and periphyton coating the leaves. We conducted laboratory microcosm and field experiments to investigate how the different feeding preferences of these seagrass-associated snails affect turtlegrass Thalassia testudinum primary production. Data revealed that after 24 h S. viridis reduced foliar biomass (25%) and chlorophyll (30%) and injured the equivalent of 50% of daily seagrass growth per shoot. Conversely, M. modulus did not affect these variables. Our results emphasize that in subtropical seagrass communities not all small epifauna browse off leaf surfaces and some can have important direct negative impacts on their seagrass host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号