首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

2.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

3.
The horizontal components from twenty Ocean Bottom Seismometers deployed along three profiles near the Kolbeinsey Ridge, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. Two profiles were acquired parallel to the ridge, and the third profile extended eastwards across the continental Jan Mayen Basin. The modelling requires a thin (few 100 m) layer with very high V p/V s-ratio (3.5–9.5) at the sea-floor in the area lacking sedimentary cover. The obtained V p/V s-ratios for the remaining part of layer 2A, 2B, 3 and upper mantle, correspond to the following lithologies: pillow lavas, sheeted dykes, gabbro and peridotite, respectively. All crustal layers exhibit a decreasing trend in V p/V s-ratio away-from-the-axis, interpreted as decreasing porosity and/or crack density in that direction. A significant S-wave azimuthal anisotropy is observed within the thin uppermost layer of basalt near the ridge. The anisotropy is interpreted as being caused by fluid-filled microcracks aligned along the direction of present-day maximum compressive stress, and indicates crustal extension at the ridge itself and perpendicular-to-the-ridge compression 12 km off axis. Spreading along the Kolbeinsey Ridge has most likely been continuous since its initiation ca. 25 Ma: The data do not suggest the presence of an extinct spreading axis between the Kolbeinsey Ridge and the Aegir Ridge as has been proposed earlier. The V p/V s-ratios found in the Jan Mayen Basin are compatible with continental crust, overlain by a sedimentary section dominated by shale.  相似文献   

4.
This paper presents seismic reflection and refraction data from the Mozambique Channel, collected between 1971 and 1973. A deep sedimentary basin (up to 5 km of sediments) opens southwards to the Mozambique Basin, and is bounded to the east by the Davie Ridge and beyond by the marginal plateau of Malagasy. A continuous reflector (C), possibly of Cretaceous age, is identified between layers having seismic interval velocities of 2.4–2.8 km/s and 3.1–3.4 km/s. The deepest sediments have velocities of 4.5–4.9 km/s and overlie a layer with velocity 5.5 km/s, which may be volcanic in the north-east of the Channel.The crust occupying most of the Channel is probably pre-Cretaceous in age, and may be largely continental in nature. This is supported by subdued magnetic anomalies and the possibility of a continuous Karroo sedimentary section across the northern Channel. The oceanic crust of the Mozambique Basin may extend as far north as 24°S, into the western Channel only. The problem of the origin of the Mozambique Channel remains unresolved, although a long sedimentary history indicates that Malagasy may have separated from Mainland Africa prior to Karroo times. The Davie Ridge may possibly represent a relict strike-slip fault, which permitted movement along a north-south line.  相似文献   

5.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

6.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

7.
Results are presented from a deep seismic sounding experiment with the research vessel POLARSTERN in the Scoresby Sund area, East Greenland. For this continental margin study 9 seismic recording landstations were placed in Scoresby Sund and at the southeast end of Kong Oscars Fjord, and ocean bottom seismographs (OBS) were deployed at 26 positions in and out of Scoresby Sund offshore East Greenland between 70° and 72° N and on the west flank of the Kolbeinsey Ridge. The landstations were established using helicopters from RV POLARSTERN. Explosives, a 321 airgun and 81 airguns were used as seismic sources in the open sea. Gravity data were recorded in addition to the seismic measurements. A free-air gravity map is presented. The sea operations — shooting and OBS recording — were strongly influenced by varying ice conditions. Crustal structure 2-D models have been calculated from the deep seismic sounding results. Free-air gravity anomalies have been calculated from these models and compared to the observed gravity. In the inner Scoresby Sund — the Caledonian fold belt region — the crustal thickness is about 35 km, and thins seaward to 10 km. Sediments more than 10 km thick on Jameson Land are of mainly Mesozoic age. In the outer shelf region and deep sea a ‘Moho’ cannot clearly be identified by our data. There are only weak indications for the existence of a ‘Moho’ west of the Kolbeinsey Ridge. Inside and offshore Scoresby Sund there is clear evidence for a lower crust refractor characterised byp-velocities of 6.8–7.3 km s?1 at depths between 6 and 10 km. We believe these velocities are related to magmatic processes of rifting and first drifting controlled by different scale mantle updoming during Paleocene to Eocene and Late Oligocene to Miocene times: the separation of Greenland/Norway and the separation of the Jan Mayen Ridge/Greenland, respectively. A thin igneous upper crust, interpreted to be of oceanic origin, begins about 50 km seaward of the Liverpool Land Escarpment and thickens oceanward. In the escarpment zone the crustal composition is not clear. Probably it is stretched and attenuated continental crust interspersed with basaltic intrusions. The great depth of the basement (about 5000 m) points to a high subsidence rate of about 0.25 mm yr?1 due to sediment loading and cooling of the crust and upper mantle, mainly since Miocene time. The igneous upper crust thickens eastward under the Kolbeinsey Ridge to about 2.5 km; the thickening is likely caused by higher production of extrusives. The basementp-velocity of 5.8–6.0 km s?1 is rather high. Such velocities are associated with young basalts and may also be caused by a higher percentage of dykes. Tertiary to recent sediments, about 5000 m thick, form most of the shelf east of Scoresby Sund, Liverpool Land and Kong Oscars Fjord. This points to a high sedimentation rate mainly since the Miocene. The deeper sediments have a rather high meanp-velocity of 4.5 km s?1, perhaps due to pre-Cambrian to Caledonian deposits of continental origin. The upper sediments offshore Scoresby Sund are thick and have a rather low velocity. They are interpreted as eroded material transported from inside the Sund into the shelf region. Offshore Kong Oscars Fjord the upper sediments, likely Jurassic to Devonian deposits, are thin in the shelf region but thicken to more than 3000 m in the slope area. The crust and upper mantle structure in the ocean-continent transition zone is interpreted to be the result of the superposition of the activities of three rifting phases related to mantle plumes of different dimensions:
  1. the ‘Greenland/Norway separation phase’ of high volcanic activity,
  2. the ‘Jan Mayen Ridge/Greenland separation phase’ and
  3. the ‘Kolbeinsey Ridge phase’ of ‘normal’ volcanic activity related to a more or less normal mantle temperature.
During period 2 and 3 only a few masses of extrusives were produced, but large volumes of intrusives were emplaced. So the margin between Scoresby Sund and Jan Mayen Fracture Zone is interpreted to be a stretched margin with low volcanic activity.  相似文献   

8.
Five seismic refraction lines, 70–90 km long, were shot in the South Florida Platform region of the Gulf of Mexico using digital ocean-bottom seismographs. Apparent velocities and depths were calculated from the refracted arrivals using a flat-layer model for the region. The two dominant refractors have apparent compressional-wave velocity ranges of 5.6 to 5.9 km s–1 and 6.2 to 6.7 km s–1. On the Sarasota Arch, the depth to the top of a 5.8–5.9km/s layer is 3–4 km below sea level. This depth corresponds to the depth to the crystalline basement. The basement dips to the north and to the south from the arch, with velocity of the upper crust increasing from 5.8–5.9 km s–1 to a maximum of 6.7 km s–1 at a depth of 6.3 km. Under the continental slope, the crust has presumably been thinned and extended. The deepest refractor has an apparent velocity of about 7.5 km s–1 at a depth of 25 km. The thickness of the crustal section and the absence of any mantle arrivals in these long refraction profiles on the platform suggest that thick continental crust underlies the South Florida Platform. A north-south cross-section through the platform suggests the presence of two structural highs separated by a portion of the South Florida Basin, which contains at least 5 km of sediment.  相似文献   

9.
南海北部地球物理特征及地壳结构   总被引:2,自引:0,他引:2  
为了研究南海地壳结构,中国和日本合作在南海北部首次进行了以炸药为震源的综合地球物理调查。经初步分析其地壳结构主要特征为:南海北部地壳分为沉积层、上地壳层、中地壳层及下地壳层。大陆架及上陆坡地壳厚度大、稳定。下陆坡地壳厚度除中地壳外,其他壳层厚度减薄且不稳定。深海盆地壳分3层,厚度虽薄但相对稳定,其底部缺失7.3km·s-1的高速层。测区内地壳总厚度:陆壳26—30km,过渡壳13—22km,洋壳为8km。  相似文献   

10.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

11.
Two dimensional crustal models derived from four different ocean bottom seismographic (OBS) surveys have been compiled into a 1,580 km long transect across the North Atlantic, from the Norwegian Møre coast, across the extinct Aegir Ridge, the continental Jan Mayen Ridge, the presently active Kolbeinsey Ridge north of Iceland, into Scoresby Sund in East Greenland. Backstripping of the transect suggests that the continental break-up at ca. 55 Ma occurred along a west-dipping detachment localized near the western end of a ca. 300 km wide basin thinned to less than 20 km crustal thickness. It is likely that an east-dipping detachment near the present day Liverpool Land Escarpment was active during the late stages of continental rifting. A lower crustal high-velocity layer (7.2–7.4 km/s) interpreted as mafic intrusions/underplating, was present beneath the entire basin. The observations are consistent with the plume hypothesis, involving the Early Tertiary arrival of a mantle plume beneath central Greenland and focused decompression melting beneath the thinnest portions of the lithosphere. The mid-Eocene to Oligocene continental extension in East Greenland is interpreted as fairly symmetric and strongly concentrated in the lower crustal layer. Continental break-up which rifted off the Jan Mayen Ridge, occurred at ca. 25 Ma, when the Aegir Ridge became extinct. The first ca. 2 m.y. of oceanic accretion along the Kolbeinsey Ridge was characterized by thin magmatic crust (ca. 5.5 km), whereas the oceanic crustal formation since ca. 23 Ma documents ca. 8 km thick crust and high magma budget.  相似文献   

12.
This paper describes the analysis and interpretation of six Expanding Spread Profiles (ESP) which were shot approximately perpendicular to a 300 km long vertical reflection profile along the eastern continental margin of the Bay of Biscay (Aquitaine shelf) by the French ECORS program in association with Hispanoil. This transect crosses various tectonic features of different ages: the Armorican shelf, the Parentis basin and the Cantabria shelf. Velocity—depth models have been derived from the ESPs by the combination of two complementary methods using time-distance and intercept-slowness domains. They provide important constraints for the analysis of the vertical reflection data. The velocities allow definition of crustal layering with a 5.8-6.2 km s−1 upper crust and a 6.5–7.1 km s−1 lower crust. This layering matches the change of reflectivity observed on CDP data with a relatively transparent upper crust and upper mantle in opposition to a highly layered lower crust. Important variations of the thickness of these two layers are revealed by this study. The most important one occurs beneath the Parentis basin with a 15 km shallowing of the upper mantle, the velocity distribution suggesting that major crustal thinning has taken place at the cost of a large part of the lower crust.  相似文献   

13.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

14.
The Agulhas Ridge is a prominent topographic feature that parallels the Agulhas-Falkland Fracture Zone (AFFZ). Seismic reflection and wide angle/refraction data have led to the classification of this feature as a transverse ridge. Changes in spreading rate and direction associated with ridge jumps, combined with asymmetric spreading within the Agulhas Basin, modified the stress field across the fracture zone. Moreover, passing the Agulhas Ridge’s location between 80 and 69 Ma, the Bouvet and Shona Hotspots may have supplied excess material to this part of the AFFZ thus altering the ridge’s structure. The low crustal velocities and overthickened crust of the northern Agulhas Ridge segment indicate a possible continental affinity that suggests it may be formed by a small continental sliver, which was severed off the Maurice Ewing Bank during the opening of the South Atlantic. In early Oligocene times the Agulhas Ridge was tectono-magmatically reactivated, as documented by the presence of basement highs disturbing and disrupting the sedimentary column in the Cape Basin. We consider the Discovery Hotspot, which distributes plume material southwards across the AAFZ, as a source for the magmatic material.  相似文献   

15.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

16.
Southwestward volume transport (referred to 1,500 db) out of the Gulf of Alaska seaward of the continental shelf in May 1972 was 12.5 Sv, and nearly 3/4 of this flow occurred within 50 km of the shelf edge. Mean geostrophic velocities of about 50 cm s–1 occurred in a band 20 km wide, which extended 500 km along the shelf edge; a maximum velocity of 98 cm s–1 (nearly 2 knots) was obtained. Bottom flow along the inshore part of the shelf as determined by seabed drifters was generally onshore at 0.5 cm s–1. Evidence is presented of a large cyclonic gyre on the shelf encompassing the Portlock and Albatross Banks, perturbations in surface flow along the shelf edge, and relations between coastal tidal heights and fluctuations in geopotential topography at the shelf edge.  相似文献   

17.
The Mozambique Ridge (MOZR) is one of the basement high structures located in the Southwest Indian Ocean, parallel to the Southeast African continental margin. It was formed as a result of the tectono-magmatic evolution of the Gondwana breakup. The origin of the MOZR has been highly debated, with models suggesting either continental or oceanic origin. With new free-air gravity anomaly and multichannel seismic (MCS) reflection data, we present results of 2D density modeling along two seismic profiles acquired by R/V Xiangyanghong 10 at the northern Mozambique Ridge (N-MOZR) between 26°S and 28°S. We observed high free-air gravity anomaly and strong positive magnetic anomaly related to the emplaced seaward dipping reflectors (SDR) and high density lower crustal body (HDLCB), and high Bouguer gravity anomaly associated with the thinning of the continental crust underneath the N-MOZR over a distance of ~82 km. This suggests a thinned and intruded continental crust bound by the Mozambique Fracture Zone (MFZ) that is characterized by gravity low and negative magnetic anomaly. This fracture zone marks the continent-ocean boundary (COB) while the N-MOZR is the transform margin high, i.e., marks the continent-ocean transition (COT) of the Southern Mozambique margin, following the definition of transform margins. We suggest that the N-MOZR was formed by continental extension and subsequent breakup of the MFZ, accompanied by massive volcanism during the southward movement of the Antarctica block. The presence of SDR, HDLCB, and relatively thick oceanic crust indicates the volcanic nature of this transform margin.  相似文献   

18.
Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13° N latitude across the Bay of Bengal was made. The transect is from the continental shelf off Madras to the continental slope off Andaman Island in water depths of 525 m to 3350 m and across the Western Basin (bounded by foot of the continental slope of Madras and 85° E Ridge), the 85° E Ridge, the Central Basin (between the 85° E Ridge and the Ninetyeast Ridge), the Ninetyeast Ridge and the Sunda Arc. The study revealed eight seismic sequences, H1 to H8 of parallel continuous to discontinuous reflectors. Considering especially depth to the horizons, nature of reflection and on comparison with the published seismic reflection results of Currayet al. (1982), the early Eocene (P) and Miocene (M) unconformities and the base of the Quaternary sediments (Q) are identified on the seismic section. Marked changes in velocities also occur at their boundaries.In the Western Basin the acoustic basement deepening landward is inferred as a crystalline basement overlain by about 6.7 km of sediment. In the Central Basin possibly thicker sediments than in the Western Basin are estimated. The sediments in the Sunda Arc area are relatively thick and appears to have no distinct horizons. But the entire sedimentary section appears to be consisting of folded and possibly faulted layers.The comparatively broader wavelength magnetic anomalies of the Central Basin also indicate deeper depth of their origin. Very prominent double humped feature of the 85° E Ridge and broad basement swell of the Ninetyeast Ridge are buried under about 2.8 km thick sediments except over the prominent basement high near 92° E longitude. The positive structural relief of the buried 85° E Ridge in the area is reflected in magnetic signature of about 450 nT amplitude. Flexural bulge of the 85° E Ridge and subsidence of the Ninetyeast Ridge about 24 cm my–1 rate since early Eocene period have been inferred from the seismic sequence analysis.  相似文献   

19.
Compressional (VP) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05–5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.  相似文献   

20.
TAIGER project deep-penetration seismic reflection profiles acquired in the northeastern South China Sea (SCS) provide a detailed view of the crustal structure of a very wide rifted continental margin. These profiles document a failed rift zone proximal to the shelf, a zone of thicker crust 150 km from the shelf, and gradually thinning crust toward the COB, spanning a total distance of 250–300 km. Such an expanse of extended continental crust is not unique but it is uncommon for continental margins. We use the high-quality images from this data set to identify the styles of upper and lower crustal structure and how they have thinned in response to extension and, in turn, what rheological variations are predicted that allow for protracted crustal extension. Upper crustal thinning is greatest at the failed rift (βuc ≈ 7.5) but is limited farther seaward (βuc ≈ 1–2). We interpret that the lower crust has discordantly thinned from an original 15–17 km to possibly less than 2–3 km thick beneath the central thick crust zone and more distal areas. This extreme lower crustal thinning indicates that it acted as a weak layer allowing decoupling between the upper crust and the mantle lithosphere. The observed upper crustal thickness variations and implied rheology (lower crustal flow) are consistent with large-scale boudinage of continental crust during protracted extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号