首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   5篇
地质学   3篇
海洋学   7篇
自然地理   5篇
  2012年   2篇
  2008年   1篇
  2007年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
排序方式: 共有20条查询结果,搜索用时 93 毫秒
1.
An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.  相似文献   
2.
A 140 km long wide-angle seismic profile has been acquired by use of 6 Ocean Bottom Seismographs across the Jan Mayen Ridge, North Atlantic. The profile was acquired twice; once with a traditionally tuned standard source and secondly with a somewhat smaller source tuned on the first bubble pulse. Analysis of the frequency content of the data reveals that the single-bubble source within the 10-15 Hz frequency range generates a signal with a level about 5 db above that of the standard source. These differences can partly be related to differences in airgun depth. The higher output level for these frequencies enables the single-bubble source to resolve intra-crustal structures with a higher degree of certainty, when compared to the data acquired by use of the standard source array. The standard source seems to generate slightly more energy for frequencies around 6 Hz, probably due to the use of a large 1200 in/sup3 gun in this array. These low frequencies a re of importance for mapping of lower crustal and upper mantle structures, and it is recommended that this is taken into account when seismic sources for mapping of deep crustal and upper mantle structures are designed.  相似文献   
3.
Tectonic setting of the Azores Plateau deduced from a OBS survey   总被引:1,自引:0,他引:1  
Miranda  J.M.  Mendes Victor  L.A.  Simões  J.Z.  Luis  J.F.  Matias  L.  Shimamura  H.  Shiobara  H.  Nemoto  H  Mochizuki  H.  Hirn  A.  Lépine  J.C. 《Marine Geophysical Researches》1998,20(3):171-182
The studies of Azores seismicity generally show shocks with either normal faulting or right-lateral strike-slip along the ESE direction, compatible with a eastward relative motion of the Eurasian (EU) relative to the African (AF) plate. However, the 1 January 1980 earthquake was interpreted as a clear left-lateral strike-slip shock along the N150E direction. This pattern is difficult to explain in terms of the relative motion between the EU, AF and North American (NA) plates: all available models for the present day movement of this triple junction fail to explain the regional variability in the stress conditions of the area. Here we present data from a 34-day long Ocean Bottom Seismograph array deployment. We show that the seismicity is distributed along a band aligned with the island chain itself, and is concentrated along several faults with an approximate N150E strike, cutting the Azores plateau in all the area covered by the OBS network. The combination of these new results with other geophysical data permits us to conclude that the tectonic setting of the Azores plateau is characterised by the existence of two sets of faults, in the N120E and N150E directions, defining several crustal blocks, whose relative motion accommodates the interaction of the three megaplates. The deformation of these tectonic blocks is probably driven by the shear between the EU and AF plates. This model explains well the spatial variability of the stress conditions in the Azores domain, the combination of dextral and sinistral strike slip mechanisms and the observed seismotectonics of the Azores islands.  相似文献   
4.
The evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, is discussed on the basis of a crustal transect obtained by seismic experiment from the Kolbeinsey Ridge to the Jan Mayen Basin. The crustal model indicates a relatively uniform structure; no significant lateral velocity variations are observed, especially in the lower crust. The uniform velocity structure suggests that the postulated extinct axis does not exist over the oceanic crust formed at the Kolbeinsey Ridge, but supports a model of continuous spreading along the ridge after oceanic spreading started west of the Jan Mayen Basin. The oceanic crust formed at Kolbeinsey Ridge is 1–2.5 km thicker than normal oceanic crust due to hotter-than-normal mantle from the Iceland Mantle Plume. The observed generally uniform thickness throughout the transect might also indicate that the temperatures of the astheno-spheric mantle ascending along the Kolbeinsey Ridge have not changed significantly since the age of magnetic anomaly 6B.  相似文献   
5.
The horizontal components from fourteen Ocean Bottom Seismometers deployed along four profiles focused along the western margin of the Jan Mayen microcontinent, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. The seismic models have furthermore been constrained by 2D gravity modelling. High V p/V s-ratios (2.3–7.9) within the Cenozoic sedimentary section are attributed to significant porosities, whereas V p/V s-ratios in the order of 1.9–2.2 for the Mesozoic and Paleozoic sedimentary rocks indicate shale-dominated lithology throughout the area. The eastern side of the Jan Mayen Ridge is interpreted as a passive, volcanic margin, based on relatively high crustal V p/V s-ratios (1.9), whereas lower V p/V s-ratios (1.75–1.8) suggest the presence of intermediate composition crust and non-volcanic margin on the western side of the ridge. In the westernmost part of the Jan Mayen Basin, slightly increased upper mantle V p/V s-ratios may indicate some degree of serpentization of upper mantle peridotites.  相似文献   
6.
We have obtained precise estimates of the position of Ocean Bottom Seismometers (OBS) on the sea bottom. Such estimates are usually uncertain due to their free falling deployment. This uncertainty is small enough, or is correctable, with OBS spacing of more than 10 km usually employed in crustal studies. But, for example, if the spacing is only 200 m for OBS reflection studies, estimates of the position with an accuracy of the order of 10 m or more is required.The determination was carried out with the slant range data, ship position data and a 1D acoustic velocity structure calculated from Conductivity–Temperature–Depth (CTD) data, if they are available. The slant range data were obtained by an acoustic transponder system designed for the sinker releasing of the OBS or travel time data of direct water wave arrivals by airgun shooting. The ship position data was obtained by a single GPS or DGPS. The method of calculation was similar to those used for earthquake hypocenter determination.The results indicate that the accuracy of determined OBS positions is enough for present OBS experiments, which becomes order of 1 m by using the DGPS and of less than 10 m by using the single GPS, if we measure the distance from several positions at the sea surface by using a transponder system which is not designed for the precise ranging. The geometry of calling positions is most important to determine the OBS position, even if we use the data with larger error, such as the direct water wave arrival data. The 1D acoustic velocity structure should be required for the correct depth of the OBS. Although it is rare that we use a CTD, even an empirical velocity structure works well.  相似文献   
7.
8.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   
9.
—Semi-regional Ocean Bottom Seismograph (OBS) data acquired in the central and northern part of the Vøring Basin, mid-Norway margin, have been modeled by use of 2-D ray-tracing. The semi-regional model, derived from the study of twenty-five OBSs deployed along a 120-km long profile, is compared with a regional model consisting of five OBSs from the same profile. The semi-regional model is somewhat more detailed than the regional model, due to the considerably closer receiver spacing. The overall geometry and velocity distribution of the two models are remarkably similar, however, proving that the regional procedure with large OBS spacing provides a reliable regional model.¶Intrusions of sills, related to early Tertiary continental rifting and break up, are important at intermediate and deep sedimentary levels (2–10 km below sea floor) in most parts of the area. The semi-regional modeling suggests that one of the deepest sills extends much further east and is substantially thicker (locally more than 500 m) than indicated in the regional model. Another important difference is a high-velocity body within the upper crystalline crust at 11–12 km depth in the NW part of the area, indicating that the closer OBS spacing in the semi-regional modeling allows detection of local intra-crustal intrusions. Local differences are also inferred in the lower crust; at about 20 km depth a structure is inferred within the lower crust from wide-angle reflections. This might suggest that the high-velocity lower crustal layer, interpreted as magmatic underplating, consists of a mixture of underplated/intruded magmatic material and blocks of continental lower crust.  相似文献   
10.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号