首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
等效原理对天体是否成立?是近年来人们关心的重大课题之一。1981年作者提出的引力质量与惯性质量不相等假说是等效原理失效理论中形式比较具体的一种,本文则是应用它探讨月球的异常运动。按文[1]提出的假说,地球引力质量与它在太阳引力场中的位置和运动状态有关,从而引起月球轨道的大小有季节性变化。地球在近日点附近月轨最小,在远日点附近月轨最大,二者相差86.87厘米。现代激光测距技术和铯原子钟相结合,理应可以对此结果作出明确的判断。  相似文献   

2.
胡小工  黄珹 《天文学进展》2001,19(2):289-294
讨论满足约束条件的月球卫星飞行轨道的设计问题,将约束条件分类为只与太阳,月球,地球,飞行器和观测站之间的相对位置有关的运行学约束条件以及涉及到飞行器轨道运行的动力学约束条件,在考虑月球卫星轨道的受力情况后,给出一种准确快速地计算和设计满足约束条件的标准飞行轨道的方法,并应用于不同约束条件下月球卫星的轨道预设计,初步讨论了轨道设计的误差分析,轨道跟踪及实时精密定轨等正在进行的其它相关工作。  相似文献   

3.
月球卫星轨道力学综述   总被引:5,自引:0,他引:5  
刘林  王歆 《天文学进展》2003,21(4):281-288
月球探测器的运动通常可分为3个阶段,这3个阶段分别对应3种不同类型的轨道:近地停泊轨道、向月飞行的过渡轨道与环月飞行的月球卫星轨道。近地停泊轨道实为一种地球卫星轨道;过渡轨道则涉及不同的过渡方式(大推力或小推力等);环月飞行的月球卫星轨道则与地球卫星轨道有很多不同之处,它决不是地球卫星轨道的简单克隆。针对这一点,全面阐述月球卫星的轨道力学问题,特别是环月飞行中的一些热点问题,如轨道摄动解的构造、近月点高度的下降及其涉及的卫星轨道寿命、各种特殊卫星(如太阳同步卫星和冻结轨道卫星等)的轨道特征、月球卫星定轨等。  相似文献   

4.
近年来月球探测已经进入了一个全新的时代。特别是 1 990年以来 ,多个月球探测计划已经被成功实现 ,而且另外还有多个探测计划也在准备当中 ,并将在未来的几年内发射升空。在这种背景之下 ,中国的航天机构和有关的科学家也开始积极酝酿和开发自己的月球探测计划。这些月球探测计划将利用卫星上搭载的各种仪器探测和测量月球的地质和地理特性、化学成分和矿物组成、月球物理学特征以及包含地球大气在内的地月空间环境和行星际空间环境 ;进一步研究月球的起源和演化 ,探明月面环境 ,研究太阳等离子体物理 ,提供月面天文台和月面长期科研基地的候选地址 ,调查月球上的可利用资源 ,为将来开发月球提供充实的背景资料。参与新一轮的月球探测同样也为中国天文学研究带来了新的机会。  相似文献   

5.
对月球形状的估算   总被引:1,自引:0,他引:1  
1799年,Laplace发现月球的3个主惯量矩,与月球的轨道和自转状态并不相符.有些学者认为,这可能是现在的月球仍保留了早期的"化石"形状.大约在三十多亿年前,月球曾经离地球很近并且转得较快,然后月球逐渐迁移远离地球并且转动得慢了下来.在此迁移的较早时期,月球受到了引潮力和自转离心力的作用,成为一个椭球体.并且很快凝固.所幸的是,固态月球的岩石圈较为稳定,使我们现在仍然能够看到很早时期月球的形状.文中利用月球天平动参数以及引力场系数,计算了椭球体3个主向径a,b,c的长度和月球的平衡潮形状,得到如下3个结论:(1)开始时月球离地球是非常近的,大约在三十亿年前月球可能已经冷却和固化,现在的月球基本上保留了凝结时的形状.(2)证明了液态月球的潮汐形变是月球平衡潮高度的1.934倍.因此用月球引力场推算月球形状时,必需考虑到流体勒夫数hf=1.934的影响.(3)根据月球三个主轴a,6,c的长度之差,推算了月球临凝固时的月地距离为1.7455×1O8m,自转周期为3.652 day.从而推算出月球临凝固时的恒星月长度为8.34day.因此在月球凝结时,月球被锁定在与自转速率比为2:1的共振轨道上.  相似文献   

6.
2011年9月10日,美国航空航天局从佛罗里达州卡纳维拉尔角空军基地17B发射台用德尔他-2火箭发射了一对名为“圣杯”的探月卫星,其全称是“月球重力恢复和内部实验室”(Gravity Recovery And Interior Laboratory--GRAIL)月球探测卫星,它们将对月球进行详细的勘测,绘制精确的月球重力分布情况,  相似文献   

7.
月球卫星最优小推力变轨研究   总被引:2,自引:0,他引:2  
曾国强  郗晓宁  任萱 《天文学报》2000,41(3):289-299
对利用小推力发动机将月球探器从双曲线轨道转移到圆轨的燃料最省转移问题,进行了研究,首先,将问题分解为双曲线到椭圆的转移和从椭圆到目标圆轨道的转移两步,然后,分别利用遗传算法解决了冲量假设下的最估转移、小推力加速民政部下从双曲线到椭圆的转移轨道优化,以及转移时间有约束情况下的从椭圆到圆轨道的转移轨道优化问题。  相似文献   

8.
继日本、中国、印度在2007~2008在先后各发射一颗月球探测卫星之后,美国又将在2009年6月一举发射两个月球探测卫星,并且其中一个要对月球进行十分猛烈的撞击式探测,从而使全球月球探测活动趋向白热化。  相似文献   

9.
今后几年的月球探测和月球科学   总被引:1,自引:0,他引:1  
近年来月球探测已经进入了一个全新的时代。特别是1990年以来,多个月球探测计划已经被成功实现,而且另外还有多个探测计划也在准备当中,并将在未来的几年内发射升空。在这种背景之下,中国的航天机构和有关的科学家也开始积极酝酿和开发自己的月球探测计划。这些月球探测计划将利用卫星上搭载的各种仪器探测和测量月球的地质和地理特性、化学成分和矿物组成、月球物理学特征以及包含地球大气在内的地月空间环境和行星际空间环境;进一步研究月球的起源和演化,探明月面环境,研究太阳等离子体物理,提供月面天文台和月面长期科研基地的候选地址,调查月球上的可利用资源,为将来开发月球提供充实的背景资料。参与新一轮的月球探测同样也为中国天文学研究带来了新的机会。  相似文献   

10.
日本SELENE月球探测计划和卫星间多普勒跟踪的数学模型   总被引:11,自引:0,他引:11  
平劲松  RISE  Group 《天文学进展》2001,19(3):354-364
日本月球探测计划(SELENE)定于2004年夏季利用HIIa火箭发射一组共3颗绕月人造卫星。他们是主卫星、跟踪中断卫星和空间VLBI电波源。其主要科学目标之一是利用对绕月卫星的多普勒跟踪数据精确测定月球重力场,研究月球的起源与演化。SELENE计划中实现这个科学目标的关键技术是引入中继卫星,目的在于当处于低轨道的主卫星飞行到月球背面地面观测站无法观测时,采用卫星间跟踪方法(SST),建立地面站与主卫星之间的联系,以得到月球背面重力场的直接测量数据。介绍了几种典型的四程卫星间多普勒跟踪模式和相应的数学模型,并针对SELENE计划中采用的特殊四程多普勒跟踪模式建立了卫星相对观测站速度与跟踪信号多普勒频移之间的转换关系。提出了利用GEODYNⅡ定轨分析软件处理SELENE多普勒跟踪数据的流程。  相似文献   

11.
The analysis of the Moon artificial satellite orbits stability and satellite system configuring are important issues of lunar orbital navigational system development. The article analyses the influence of different combinations of perturbations on Moon artificial satellite’s obits evolution. The method of Moon artificial satellite’s orbital evolution analysis is offered; general stability regions of Moon artificial satellite’s orbits are defined and the quality characteristics of the selected orbital groups of the satellite system are evaluated.  相似文献   

12.
The design of a lunar landing trajectory which satisfies certain constraints is considered and discussed. The constraints are of two kinds, kinetic constraints, which deal with the relative positions among the Sun, the Moon, the Earth, the spacecraft and tracking stations, and dynamic constraints, which deal with the orbital motion of the spacecraft. After a discussion of the characteristics of lunar flight trajectory, a method of designing standard flight trajectory is suggested that satisfies the constraints. This method is applied to the Chinese lunar landing flight and to the pre-design of the orbit of a lunar satellite.  相似文献   

13.
Physical librations of the Moon are small cyclic perturbations with periods of one month and longer, and amplitudes of 100 arc seconds or less. These cause the selenographic axes fixed in the true Moon to have a different orientation than similar axes fixed in the mean Moon.Physical librations have two types of effects of present interest. If the orbital elements of a lunar satellite are referred to selenographic axes in the true Moon as it rotates and librates, then the librations cause changes in the orientation angles (node, inclination, and periapsis argument of the satellite) large enough that long-period perturbation theory cannot be used without compensation for such geometrical effects. As a second effect, the gravitational potential of the Moon is actually wobbled in inertial space, a condition not included in the potential expression used in perturbation theory.This paper gives data on the magnitude of the physical librations, the geometrical effects on the orbital elements and the equivalent changes in the coefficients in the potential. It is shown that geometrical effects can be accommodated either by using an inertial axes system or by compensating for the lunar librations and precession when the selenographic axes are used. Further, it is shown that physical effects are small and negligible for all but the most exacting endeavors.  相似文献   

14.
Multiple large impact basins on the lunar nearside formed in a relatively-short interval around 3.8-3.9 Gyr ago, in what is known as the Lunar Cataclysm (LC; also known as Late Heavy Bombardment). It is widely thought that this impact bombardment has affected the whole Solar System or at least all the inner planets. But with non-lunar evidence for the cataclysm being relatively weak, a geocentric cause of the Lunar Cataclysm cannot yet be completely ruled out [Ryder, G., 1990. Eos 71, 313, 322-323]. In principle, late destabilization of an additional Earth satellite could result in its tidal disruption during a close lunar encounter (cf. [Asphaug, E., Agnor, C.B., Williams, Q., 2006. Nature 439, 155-160]). If the lost satellite had D>500 km, the resulting debris can form multiple impact basins in a relatively short time, possibly explaining the LC. Canup et al. [Canup, R.M., Levison, H.F., Stewart, G.R., 1999. Astron. J. 117, 603-620] have shown that any additional satellites of Earth formed together with (and external to) the Moon would be unable to survive the rapid initial tidally-driven expansion of lunar orbit. Here we explore the fate of objects trapped in the lunar Trojan points, and find that small lunar Trojans can survive the Moon's orbital evolution until they and the Moon reach 38 Earth radii, at which point they are destabilized by a strong solar resonance. However, the dynamics of Trojans containing enough mass to cause the LC (diameters >150 km) is more complex; we find that such objects do not survive the passage through a weaker solar resonance at 27 Earth radii. This distance was very likely reached by the Moon long before the LC, which seems to rule out the disruption of lunar Trojans as a cause of the LC.  相似文献   

15.
In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite are determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.  相似文献   

16.
There exist cislunar and translunar libration points near the Moon, which are referred to as the LL 1 and LL 2 points, respectively. They can generate the different types of low-energy trajectories transferring from Earth to Moon. The time-dependent analytic model including the gravitational forces from the Sun, Earth, and Moon is employed to investigate the energy-minimal and practical transfer trajectories. However, different from the circular restricted three-body problem, the equivalent gravitational equilibria are defined according to the geometry of the instantaneous Hill boundary due to the gravitational perturbation from the Sun. The relationship between the altitudes of periapsis and eccentricities is achieved from the Poincaré mapping for all the captured lunar trajectories, which presents the statistical feature of the fuel cost and captured orbital elements rather than generating a specified Moon-captured segment. The minimum energy required by the captured trajectory on a lunar circular orbit is deduced in the spatial bi-circular model. The idea is presented that the asymptotical behaviors of invariant manifolds approaching to/traveling from the libration points or halo orbits are destroyed by the solar perturbation. In fact, the energy-minimal cislunar transfer trajectory is acquired by transiting the LL 1 point, while the energy-minimal translunar transfer trajectory is obtained by transiting the LL 2 point. Finally, the transfer opportunities for the practical trajectories that have escaped from the Earth and have been captured by the Moon are yielded by the transiting halo orbits near the LL 1 and LL 2 points, which can be used to generate the whole of the trajectories.  相似文献   

17.
We have developed a theory of the rotation of the Moon, for the purpose of obtaining libration series explicitly dependent upon lunar gravitational field model parameters. A nonlinear model is used in which the rigid Moon, whose motion in space is that of the main problem of lunar theory, and whose gravity potential is represented through its third degree harmonics, is torqued by the Earth and Sun. The analytical series are then obtained as Poisson series. Numerical comparisons with Eckhardt's solution are briefly exposed.  相似文献   

18.
The importance of an accurate model of the Moon gravity field has been assessed for future navigation missions orbiting and/or landing on the Moon, in order to use our natural satellite as an intermediate base for next solar system observations and exploration as well as for lunar resources mapping and exploitation. One of the main scientific goals of MAGIA mission, whose Phase A study has been recently funded by the Italian Space Agency (ASI), is the mapping of lunar gravitational anomalies, and in particular those on the hidden side of the Moon, with an accuracy of 1 mGal RMS at lunar surface in the global solution of the gravitational field up to degree and order 80. MAGIA gravimetric experiment is performed into two phases: the first one, along which the main satellite shall perform remote sensing of the Moon surface, foresees the use of Precise Orbit Determination (POD) data available from ground tracking of the main satellite for the determination of the long wavelength components of gravitational field. Improvement in the accuracy of POD results are expected by the use of ISA, the Italian accelerometer on board the main satellite. Additional gravitational data from recent missions, like Kaguya/Selene, could be used in order to enhance the accuracy of such results. In the second phase the medium/short wavelength components of gravitational field shall be obtained through a low-to-low (GRACE-like) Satellite-to-Satellite Tracking (SST) experiment. POD data shall be acquired during the whole mission duration, while the SST data shall be available after the remote sensing phase, when the sub-satellite shall be released from the main one and both satellites shall be left in a free-fall dynamics in the gravity field of the Moon. SST range-rate data between the two satellites shall be measured through an inter-satellite link with accuracy compliant with current state of art space qualified technology. SST processing and gravitational anomalies retrieval shall benefit from a second ISA accelerometer on the sub-satellite in order to decouple lunar gravitational signal from other accelerations. Experiment performance analysis shows that the stated scientific requirements can be achieved with a low mass and low cost sub-satellite, with a SST gravimetric mission of just few months.  相似文献   

19.
From the observations of the gravitational field and the figure of the Moon, it is known that its center of mass (briefly COM) does not coincide with the center of figure (COF), and the line “COF/COM” is not directed to the center of the Earth, but deviates from it to the South–East. Here we study the deviation of the lunar COM to the East from the mean direction to Earth.At first, we consider the optical libration of a satellite with synchronous rotation around the planet for an observer at a point on second (empty) orbit focus. It is found that the main axis of inertia of the satellite has asymmetric nonlinear oscillations with amplitude proportional to the square of the orbit eccentricity. Given this effect, a mechanism of tidal secular evolution of the Moon’s orbit is offered that explains up to \(20\%\) of the known displacement of the lunar COM to the East. It is concluded that from the alternative—evolution of the Moon’s orbit with a decrease or increase in eccentricity—only the scenario of evolution with a monotonous increase in orbit eccentricity agrees with the displacement of lunar COM to the East. The precise calculations available confirm that now the eccentricity of the lunar orbit is actually increasing and therefore in the past it was less than its modern value, \(e = 0.0549\).To fully explain the displacement of the Moon’s COM to the East was deduced a second mechanism, which is based on the reliable effect of tidal changes in the shape of the Moon. For this purpose the differential equation which governs the process of displacement of the Moon’s COM to the East with inevitable rounding off its form in the tidal increase process of the distance between the Earth and the Moon is derived. The second mechanism not only explains the Moon’s COM displacement to the East, but it also predicts that the elongation of the lunar figure in the early epoch was significant and could reach the value \(\varepsilon\approx0.31\). Applying the theory of tidal equilibrium figures, we can estimate how close to the Earth the Moon could have formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号