首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamilton-type geoacoustic models were developed for Area Foxtrot, a shallow water test bed south of Long Island, for emerging active sonar systems where the surface sediment type is highly spatially variable. Reverberation levels (RL) were modeled using the finite-element parabolic equation (FEPE) propagation model to augment the generic sonar model (GSM) propagation model because the bottom loss model in GSM did not estimate transmission loss (TL) accurately in shallow water. FEPE estimates reveal that there is a greater than 15 dB difference between TL for sand and that for silt-day sediments in Area Foxtrot. The comparison between modeled RL and measured RL (from a 1991 active sonar exercise) enabled bottom scattering strength kernels to be developed for Area Foxtrot. Bottom scattering strength was found to be a function of sediment type. Hard sand sediment has a bottom scattering strength which obeys Lambert's law (sin2 &thetas;) while that of silt-clay sediment is consistent with sub-bottom volume scattering (sine). The RLs in Area Foxtrot are azimuth-dependent and are a function of TL and bottom scattering strength (and hence bottom sediment type). Sonar beams steered towards the hard sand show higher RLs than for silt-clay, and knowledge of the sediment type and its spatial variation must be known to model RL accurately. A method to determine sediment type using measured RLs and RL slopes is given  相似文献   

2.
This paper applies a Bayesian formulation to range-dependent geoacoustic inverse problems. Two inversion methods, a hybrid optimization algorithm and a Bayesian sampling algorithm, are applied to some of the 2001 Inversion Techniques Workshop benchmark data. The hybrid inversion combines the local (gradient-based) method of downhill simplex with the global search method of simulated annealing in an adaptive algorithm. The Bayesian inversion algorithm uses a Gibbs sampler to estimate properties of the posterior probability density, such as mean and maximum a posteriori parameter estimates, marginal probability distributions, highest-probability density intervals, and the model covariance matrix. The methods are applied to noise-free and noisy benchmark data from shallow ocean environments with range-dependent geophysical and geometric properties. An under-parameterized approach is applied to determine the optimal model parameterization consistent with the resolving power of the acoustic data. The Bayesian inversion method provides a complete solution including quantitative uncertainty estimates and correlations, while the hybrid inversion method provides parameter estimates in a fraction of the computation time.  相似文献   

3.
Acoustic propagation in shallow water is greatly dependent on the geoacoustic properties of the seabottom. This paper exploits this dependence for estimating geoacoustic sediment properties from the bottom acoustic returns of known signals received on a hydrophone line array. There are two major issues in this approach: one is the feasibility of acoustic inversion with a limited aperture line array, the other is related to the knowledge of the geometry of the experimental configuration. To test the feasibility of this approach, a 40-hydrophone-4-m spaced towed array together with a low-frequency acoustic source, was operated at a shallow water site in the Strait of Sicily. In order to estimate the array deformation in real time, it has been equipped with a set of nonacoustic positioning sensors (compasses, tilt-meters, pressure gauges). The acoustic data were inverted using two complementary approaches: a genetic algorithm (GA) like approach and a radial basis functions (RBF) inversion scheme. More traditional methods, based on core sampling, seismic survey and geophone data, together with Hamilton's regression curves, have also been employed on the same tracks, in order to provide a ground truth reference environment. The results of the experiment, can be summarized as follows: 1) the towed array movement is not negligible for the application considered and the use of positioning sensors are essential for a proper acoustic inversion, 2) the inversion with GA and RBF are in good qualitative agreement with the ground truth model, and 3) the GA scheme tends to have better stability properties. On the other hand, repeated in version of successive field measurements requires much less computational effort with RBF  相似文献   

4.
5.
A remote sediment classification technique based on attenuation measurements from Chirp sub-bottom profiler data is described. This differs from previously published work in that attenuation measurements are obtained for each stratigraphic unit within a complex, thinly interbedded sedimentary sequence. Compressional wave attenuation measurements are obtained for a wide variety of lithologies, including muds, silts, sands, clayey sands, silty clays and gravel lags, with grain sizes ranging from 8 Phi to -4 Phi. In addition, attenuation measurements from sub-bottom profiler data were calibrated against laboratory acoustic measurements of vibracores and seabed samples from corresponding geographic locations, under simulated in-situ conditions using a Pulse Tube method. We adapt an instantaneous frequency matching method using a causal attenuation filter to model the decay of the Chirp transmitted waveform. From this modelling, a relationship between t* (a causal attenuation operator) and change in instantaneous frequency is established. The Hilbert transform is used to extract instantaneous frequency information from Chirp seismic, which is used to derive attenuation information for selected individual stratigraphic layers imaged by the sub-bottom profiler. This paper draws attention to the limitations in comparing attenuation measurements derived from Chirp sub-bottom profiler data against previously published literature on experimental attenuation measurements, which are limited by the wide variance of these data, and the difficulty in finding a meaningful best fit to these data. This demonstrates the importance of calibrating remote sediment classification observations using complimentary acoustic analysis of seabed samples to generate a site-specific geoacoustic database. A positive correlation between laboratory and sub-bottom profiler attenuation measurements was obtained, with a correlation coefficient of 0.885. Poorly sorted gravels with a mixed lithic and biogenic pebble component are characterised by very high attenuation with values of Q from 4 to 19. These sediments are considerably coarser-grained than those typically described in previously published experimental studies.  相似文献   

6.
Acoustic signals from small explosive charges have been measured with sonobuoys on twelve tracks in Australian northern shallow waters with the aim of assessing whether useful geoacoustic information could be obtained. Using the frequency band from 14 to 70 Hz, travel times of head waves were monitored, and the sound speeds and depths of corresponding interfaces in the seabed were derived. The water sound speed varied a little with range, and its depth dependence was allowed for by using its average value. Head waves from interfaces indistinguishable from the seafloor (the water/seabed interface) were detected on only three of the tracks, with derived sound speeds of 2100 to 2300 m/s. The first sub-bottom interfaces were from 50 to 600 m beneath the seafloor, and their sound speeds ranged from around 2000 m/s to 6400 m/s. Thus the head waves were from chalk or limestone, cemented sediments in which sound-speed gradients would be small. The amount of data obtained for the seafloor was limited by incoherence of the signals and, for some tracks, by excessive spacing between shots. The incoherence is generally attributed to multiple head waves that are individually unresolvable, while on two tracks there were indications of medal ground waves. Occasional anomalous data were obtained, but generally the assumptions of the simple interpretation method were found to be valid. Since no curvature in the range-time lines was observed, there was no evidence of sub-bottom sound-speed gradients being significant  相似文献   

7.
An inversion technique (IT) is developed and preliminarily tested using data from the 2001 IT Workshop. This technique was developed using TL versus range data collected by the harsh environments program (HEP) and provided through the workshop. However, the IT developed here applies to all sonar systems, active and passive. The sonar-independent portion of the IT consists of a simulated annealing algorithm to be developed by Neumann et al. constrained by an expert system called the Hamilton-Bachman Smart Rules (HBSR), which was developed by the authors. This expert system constrains the geoacoustic model being inverted to realistic Hamilton-Bachman-type values, curve shapes, etc. The sonar-specific module of the IT is chosen based on the sonar frequency and models available to run at those frequencies. Two measured data cases from the workshop are presented and, due to the HBSR, good solutions were acquired in less than 50 iterations.  相似文献   

8.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

9.
A method is described for the estimation of geoacoustic model parameters by the inversion of acoustic field data using a nonlinear optimization procedure based on simulated annealing. The cost function used by the algorithm is the Bartlett matched-field processor (MFP), which related the measured acoustic field with replica fields calculated by the SAFARI fast field program. Model parameters are perturbed randomly, and the algorithm searches the multidimensional parameter space of geoacoustic models to determine the parameter set that optimizes the output of the MFP. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the MFP. The performance of the algorithm is demonstrated for a vertical line array in a shallow water enviornment where the bottom consists of homogeneous elastic solid layers. Simulated data are used to determine the limits on estimation performance due to error in experimental geometry and to noise contamination. The results indicate that reasonable estimates are obtained for moderate conditions of noise and uncertainty in experimental geometry  相似文献   

10.
The problem of rapid environmental assessment in a range-dependent environment is addressed. For rapid assessment, the exact geoacoustic parameters are not required, nor is it a requirement that the exact structure of the acoustic field (location of peaks and s) be matched by an acoustic prediction model. The parameters that are relevant are the overall transmission loss (incoherent TL), the time spread (/spl tau/), and the slopes of the range/frequency interference patterns (/spl beta/, the waveguide invariant). The rapid geoacoustic characterization algorithm uses a homogeneous single-sediment layer overlying a hard acoustic basement model to optimally match the predicted acoustic observables with those estimated from data. The approach is presented here and is applied to the range-dependent benchmark cases TC1 and TC2 from the Inversion Techniques Workshop held in Gulfport, MS, in May 2001. The technique successfully reproduces the acoustic observables and estimates the sediment sound-speed, density, and attenuation profiles, as well as the sediment thickness.  相似文献   

11.
Operational environmental acoustics experiments were conducted over the frequency range of 25 to 800 Hz in September 1997 in the East China Sea, where the water depth was about 100 m. Objectives of the data analysis reported here are to characterize this environment and to assess its complexities as they may impact acoustic propagation as measured by its transmission loss (TL). Conductivity-temperature-depths and expendable bathy-thermographs sampled the ocean, such that its spatial and temporal variability could be approximately separated. The sound-speed profiles are downward refracting, involve two water masses associated with the Kuroshio Current and Taiwan Warm Current, and have thermocline variations caused by internal tides. The bottom geoacoustic characteristics, presumed to be approximately horizontally isotropic, were based on data atlases and were estimated from the measured TL, for some interpretations. The TL data were obtained in octave bands from explosive signal underwater sound sources and sonobuoy receivers, both deployed at a depth of about 18 m. Tests were conducted in directions approximately normal and parallel to the bathymetric contours and the measured TL was, to zero order, independent of the direction of propagation. To higher order, directional differences in the TL were observed and ascribed to anisotropies in bottom properties. A state-of-the-art TL model was adopted, based on environmental idealizations typical of operational forecasting and compared with the measured TL. The comparison yields a probability density function that quantifies the uncertainty of such a TL model, caused by the stochastic variability of the environment, typically unknown a priori. For the model used, the pdf has a standard deviation of about 2 dB from 50 to 800 Hz and larger below 50 Hz.  相似文献   

12.
Sonar performance predictions in shallow water are strongly dependent on good knowledge of the geoacoustic and scattering properties of the seabed. One technique to extract information about the bottom is to use a towed source and a towed horizontal array. This towed system has been shown to be applicable for characterizing the bottom properties locally by inversion of the acoustic signals received directly on the towed array at short ranges. The same towed system has also been applied to extract bottom properties from long-range reverberation data providing effective bottom properties over a large area. However, independent geoacoustic inversion of the short-range propagation and long-range reverberation data can introduce low sensitivity and uncertainty in the extracted bottom properties. An attempt to resolve this low sensitivity and ambiguity is made by a simultaneous geoacoustic inversion of short-range propagation and long-range reverberation data with the intention of constraining the possible solutions of the bottom properties.   相似文献   

13.
This paper presents the results obtained using the adaptive simulated annealing (ASA) algorithm to invert the test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001. The ASA algorithm was chosen for use in our inversion software for its speed and robustness when searching the geoacoustic parameter solution space to minimize the difference between the observed and the modeled transmission loss (TL). Earlier work has shown that the ASA algorithm is approximately 15 times faster than a modified Boltzmann annealing algorithm, used in prior versions of our TL inversion software, with comparable fits to the measured data. Results are shown for the synthetic test cases, 0 through 3, and for the measured data cases, 4 and 5. The inversion results from the synthetic test cases showed that subtle differences between range-dependent acoustic model version 1.5, used to generate the test cases, and parabolic equation (PE) 5.0, used as the propagation loss model for the inversion, were significant enough to result in the inversion algorithm finding a geoacoustic environment that produced a better match to the synthetic data than the true environment. The measured data cases resulted in better fits using ASTRAL automated signal excess prediction system TL 5.0 than using the more sophisticated PE 5.0 as a result of the inherent range averaging present in the ASTRAL 5.0 predictions.  相似文献   

14.
The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.  相似文献   

15.
Matched-field inversion is used to, estimate geoacoustic properties from data obtained in an experiment with a vertical line array (VLA). The experiment was carried out using broad-band sources (shots) in water depths of about 200 m on the continental shelf off Vancouver Island. The data were processed to obtain spectral components of the field for frequencies near the bubble frequency for the shot. The ocean bottom in this region consists of a layer of mainly sandy sediments (about 100 m thick) overlying older consolidated material. Consequently, the inversion was designed to estimate the parameters of a two-layer elastic sediment model. In the inversion, an adaptive global search algorithm was used to investigate the multidimensional space of geoacoustic models in order to determine the set of values corresponding to the best replica field. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the matched field correlation between the measured and replica fields. The geoacoustic profile estimated by the inversion consisted of a 125-m layer with compressional speed ~1700 m/s and shear speed ~400 m/s, overlying a layer with compressional speed ~1900 m/s. This model is consistent with the results from conventional seismic experiments carried out in the same region  相似文献   

16.
Over the past decade, inversion methods have been developed and applied to acoustic field data to provide information about unknown ocean-bottom environments. An effective inversion must provide both an estimate of the bottom parameters and a measure of the uncertainty of the estimated values. This paper summarizes results from the Office of Naval Research (ONR)/Space and Naval Warfare Systems Command (SPAWAR) Geoacoustic Inversion Techniques Workshop, test cases 4 and 5. The workshop was held to benchmark present-day inversion methods for estimating geoacoustic profiles in shallow water. The format of the workshop was a blind test to estimate unknown geoacoustic profiles by inversion of measured acoustic transmission loss data in octave bands and reverberation envelopes. The data sets for test cases 4 and 5 were taken at two locations in shallow water, one in the East China Sea and the other along the southwest coast of Florida. The limitations of the data and the limits to the knowledge of the sites are discussed. In both cases, impulsive sources were used in conjunction with air-deployed sonobuoys. Since the measured data was incoherent, only methods consistent with total energy matching were applicable. Comparisons between the different inversion techniques presented at the workshop are discussed. For test cases 4 and 5, a precise metric was unavailable for comparison.  相似文献   

17.
 Geophysical surveys and ground truth data are compared from a site in the Dry Tortugas, Florida. Seismic data reveal six depositional sequences bounded by high-amplitude reflectors interpreted as subaerial unconformities. Chirp sonar data reveal structure within the Holocene depositional sequence that is correlated to ground truth data. Sedimentary units within the Holocene sequence record a transition from a low-energy, lagoonal environment, to a high-energy, shallow marine environment, to a moderate-energy, slightly deeper marine environment. Forward modeling and impedance inversion reveal good agreement between sediment physical properties, acoustic properties measured by the electric logger, and the chirp sonar data.  相似文献   

18.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

19.
Reverberation measurements made by the SACLANT Undersea Research Centre at three shallow-water sites (130-190-m depth) are compared with each other and with estimates from the DREA normal-mode reverberation model OGOPOGO. The experiments over silt-clay and sand seabeds were conducted at slightly bistatic geometries (0.7-6.0-km source-receiver separation), using explosive sources detonated at mid-water depths. The signals were received on hydrophones of either a vertical or horizontal array and analyzed in one-tenth-decade frequency bands from 25 to 1000 Hz. The data are compared with each other to investigate the site differences and frequency dependencies, and with the estimates from the reverberation model OGOPOGO to interpret the data and to obtain a qualitative measure of the scattering. For modeling purposes, geoacoustic models of the seabed were assumed, and the reverberation data were fitted by adjusting the Lambert bottom scattering coefficients. Good model agreement was obtained with both individual hydrophone and data. Though somewhat sensitive to the geoacoustic the Lambert coefficients give a measure of the frequency dependence of the scattering. For the silt-clay bottom, the scattering is weak but is independent of frequency; for the sand bottoms, the scattering is stronger and increases with frequency. These results are compared with estimates from other experiments  相似文献   

20.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号