首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Observational evidence indicates that in the northern North Atlantic, especially in the Labrador Sea, almost the whole column of the ocean water is fresher, and colder in late 20th century than in 1950–1960s. Here we analyze a four-member ensemble of the 20th century simulations from a coupled climate model to examine the possible causes for these observed changes. The model simulations resemble the observed changes in the northern North Atlantic. The simulated results show that a decreased meridional freshwater divergence and an increased meridional heat divergence associated with a weaker thermohaline circulation in the North Atlantic are the primary causes for the freshening and cooling in the northern North Atlantic. The increased precipitation less evaporation tends to enforce the freshening, but the reduced sea ice flux into this region tends to weaken it. On the other hand, the surface warming induced by a higher atmospheric CO2 concentration tends to heat up the northern North Atlantic, but is overcome by the cooling from increased meridional heat divergence.  相似文献   

2.
《Ocean Modelling》2001,3(1-2):21-31
A 1/6° model simulation of the Atlantic ocean forced with daily fluxes from ECMWF (re-analysis 1979–1993 and analysis 1994–1999) has been carried out within the Clipper project. A storage strategy which filters out inertial oscillations is defined: five-day mean fields are continuously stored at five-day intervals. It is shown that aliasing errors on the monthly mean meridional heat transport (MHT, a second-order moment) are negligible in that case. These errors are of the order of 0.8 PW in the tropics in the case of a sampling strategy based on instantaneous fields stored every five days, even in the case where step-like variations in the forcing are avoided by an interpolation of the daily wind stress to the model time step. It is also shown that aliasing errors on the annual mean MHT can be as large as 0.2 PW in the tropics in the case of sub-sampling with instantaneous fields.  相似文献   

3.
An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a 'coarse-grained' image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream function. A sensitivity analysis examines the heat transport response to changes in wind stress at different latitudes. The results are compared with results from an eddy-permitting global circulation model. The westerly wind stress over the Southern Ocean has two effects: a local reduction of the surface heat loss in response to the equatorward surface Ekman drift, and a global re-routing of the heat export from the Indo-Pacific. Without wind forcing, the Indo-Pacific heat export is released to the atmosphere in the Southern Ocean, and the net heat transport in the southern Atlantic is southward. With wind forcing, the Indo-Pacific export enters the Atlantic through the Aghulas and is released in the Northern Hemisphere. The easterlies enhance the poleward heat transport in both basins.  相似文献   

4.
The meridional heat transport in the ocean is computed according to the data of zonal sections of the World Ocean Circulation Experiment made in the North Atlantic in 1992–1998. We perform the generalized analysis of the estimates of meridional heat transport obtained by different authors by direct methods on the basis of the data of sections made between 7.5 and 48°N in the second half of the last century. The meridional heat transport averaged over the entire period of observations attains its maximum (1.38 ± 0.19 PW) in the Subtropical Atlantic. The meridional heat transport is characterized by fairly intense seasonal variability. Its maximum (about 1.9 PW) is observed in the Subtropical Atlantic at the end of summer and its minimum (about 0.8 PW) is attained at the end of winter. A significant trend toward the intensification of meridional heat transport is revealed near 36°N in 1959–1993 (from 0.75 to 1.1 PW). This is an indication of the intensification of meridional oceanic circulation in the North Atlantic. Dedicated to the 75th birthday of N. A. Timofeev, Honored Scientist of the Ukraine, Doctor of Geographical Sciences __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 45–58, January–February, 2007.  相似文献   

5.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

6.
In this study, we use existing observational datasets to evaluate 20th century climate simulations of the tropical Pacific. The emphasis of our work is decadal variability of the shallow meridional overturning circulation, which links the tropical and subtropical Pacific Ocean. In observations, this circulation is characterized by equatorward geostrophic volume transport convergence in the interior ocean pycnocline across 9°N and 9°S. Historical hydrographic data indicate that there has been a decreasing trend in this convergence over the period 1953–2001 of about 11 Sverdrup (1 Sv = 106 m3 s−1), with maximum decade-to-decade variations of 7–11 Sv. The transport time series is highly anti-correlated with sea surface temperature (SST) anomalies in the central and eastern tropical Pacific, implying that variations in meridional overturning circulation are directly linked to decadal variability and trends in tropical SST. These relationships are explored in 18 model simulations of 20th century climate from 14 state-of-the-art coupled climate models. Significant correlation exists between meridional volume transport convergence and tropical SST in the majority of the models over the last half century. However, the magnitude of transport variability on decadal time scales in the models is underestimated while at the same time modeled SST variations are more sensitive to that transport variability than in the observations. The effects of the meridional overturning circulation on SST trends in most the models is less clear. Most models show no trend in meridional transport convergence and underestimate the trend in eastern tropical Pacific SST. The eddy permitting MIROCH model is the only model that reasonably reproduces the observed trends in transport convergence, tropical Pacific SST, and SST gradient along the equator over the last half century. If the observed trends and those simulated in the MIROCH model are ultimately related to greenhouse gas forcing, these results suggest that the Bjerknes feedback, by affecting pycnocline transport convergences, may enhance warming that arises from anthropogenic forcing in the eastern tropical Pacific.  相似文献   

7.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

8.
Horizontal and meridional volume transports on timescales from intra-seasonal to interannual in the North Pacific subarctic region were investigated using a reanalysis dataset for 1993–2001 that was constructed from an assimilation of the TOPEX altimeter and in situ data into an eddy-permitting North Pacific ocean general circulation model. The barotropic flow is excited along east of the Emperor Seamounts by the western intensification dynamics. The volume transport of this flow compensates for that across the interior region east of the Seamounts below the summit depth of the Seamounts. The Oyashio, which is also considered as a compensation flow for the transport in the whole interior region, includes baroclinic as well as barotropic components. Baroclinic transports in the whole interior region exceed those in the western boundary region in the upper (200–1000 m) and lower (2000–5000 m) layers, and the total transport is northward (southward) in the upper (lower) layer. These excesses of the baroclinic transport are balanced by a vertical transport of the meridional overturn. The meridional overturn has a complementary relation to the basin-scale baroclinic circulation in the North Pacific subactic region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
邓凤飞  张旭 《海洋学报》2022,44(9):13-22
大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,AMOC)是气候系统重要的组成部分,其强度变化可直接影响南北半球的热量分配,厘清其变化机理对全球变暖背景下的未来预估至关重要。海洋沉积物记录发现,在晚更新世,AMOC的变化与地球岁差周期有紧密联系,但其物理机理尚不清楚。本文利用海洋?大气耦合气候模型—COSMOS(ECHAM5/JSBACH/MPIOM)模型,通过敏感试验,分析在冰盛期冷期和间冰期暖期气候背景下,AMOC对地球岁差变化的响应机理。结果表明:岁差降低引起的北半球夏季太阳辐射增强,会导致间冰期暖期背景下的AMOC显著减弱,但对冰盛期AMOC的影响并不明显。通过进一步分析发现,在间冰期暖期,夏季太阳辐射增强,造成高低纬大西洋海表的升温,同时促进北大西洋高纬度地区的局地降水,两者导致北大西洋表层海水密度降低,共同削弱大西洋深层水生成。而在冰盛期冷期,大西洋高低纬度地区的响应对AMOC的影响反向—副热带升温触发的海盆尺度低压异常,通过其南侧的西风异常削弱大西洋向太平洋的水汽输送,导致净降水增多,海表盐度下降;同时,高纬度升温造成的海冰减少,促进了海洋热丧失,海表失热变重,有利于大西洋深层水的生成,最终两者的共同作用导致AMOC对岁差变化的响应偏弱。本文系统揭示了不同气候背景下,岁差尺度AMOC变化的控制机理,对理解晚更新世AMOC重建记录中持续存在的岁差周期具有重要启示意义。  相似文献   

10.
Recent global warming caused by humans and the prediction of a reduced Atlantic Ocean meridional overturning circulation in the future has increased interest in the role of the overturning circulation in climate change. A schematic diagram of the overturning circulation called the “Great Ocean Conveyor Belt,” published by Wallace Broecker in 1987, has become a popular image that emphasizes the inter-connected ocean circulation and the northward flux of heat in the Atlantic. This seems a good time to review the development of the conveyor belt concept and summarize the history of overturning circulation schematics.In the 19th century it was thought that symmetric overturning circulation cells were located on either side of the equator in the Atlantic. As new hydrographic measurements were obtained, circulation schematics in the early 20th century began to show the inter-hemispheric overturning circulation in the Atlantic. In the second half of the 20th century schematics showed the global ocean overturning circulation including connections between the Atlantic and the Pacific and Indian Oceans. Some recent schematics of the overturning circulation show its complexities, but as more information is included these schematics have also become complex and not as easy to understand as the simple Broecker 1987 version. However, these complex schematics, especially the quantitative ones, represent valuable syntheses of our developing knowledge of the overturning circulation.  相似文献   

11.
The sensitivity of the North Atlantic gyre circulation to high latitude buoyancy forcing is explored in a global, non-eddy resolving ocean general circulation model. Increased buoyancy forcing strengthens the deep western boundary current, the northern recirculation gyre, and the North Atlantic Current, which leads to a more realistic Gulf Stream path. High latitude density fluxes and surface water mass transformation are strongly dependent on the choice of sea ice and salinity restoring boundary conditions. Coupling the ocean model to a prognostic sea ice model results in much greater buoyancy loss in the Labrador Sea compared to simulations in which the ocean is forced by prescribed sea ice boundary conditions. A comparison of bulk flux forced hindcast simulations which differ only in their sea ice and salinity restoring forcings reveals the effects of a mixed thermohaline boundary condition transport feedback whereby small, positive temperature and salinity anomalies in subpolar regions are amplified when the gyre spins up as a result of increased buoyancy loss and convection. The primary buoyancy flux effects of the sea ice which cause the simulations to diverge are ice melt, which is less physical in the diagnostic sea ice model, and insulation of the ocean, which is less physical with the prognostic sea ice model. Increased salinity restoring ensures a more realistic net winter buoyancy loss in the Labrador Sea, but it is found that improvements in the Gulf Stream simulation can only be achieved with the excessive buoyancy loss associated with weak salinity restoring.  相似文献   

12.
《Ocean Modelling》2003,5(2):91-127
The Hamburg Ocean Primitive Equation model has undergone significant development in recent years. Most notable is the treatment of horizontal discretisation which has undergone transition from a staggered E-grid to an orthogonal curvilinear C-grid. The treatment of subgridscale mixing has been improved by the inclusion of a new formulation of bottom boundary layer (BBL) slope convection, an isopycnal diffusion scheme, and a Gent and McWilliams style eddy-induced mixing parameterisation. The model setup described here has a north pole over Greenland and a south pole on the coast of the Weddell Sea. This gives relatively high resolution in the sinking regions associated with the thermohaline circulation. Results are presented from a 450 year climatologically forced integration. The forcing is a product of the German Ocean Model Intercomparison Project and is derived from the European Centre for Medium Range Weather Forecasting reanalysis. The main emphasis is on the model’s representation of key quantities that are easily associated with the ocean’s role in the global climate system. The global and Atlantic northward poleward heat transports have peaks of 1.43 and 0.84 PW, at 18° and 21° N respectively. The Atlantic meridional overturning streamfunction has a peak of 15.7 Sv in the North Atlantic and an outflow of 11.9 Sv at 30° S. Comparison with a simulation excluding BBL shows that the scheme is responsible for up to a 25% increase in North Atlantic heat transport, with significant improvement of the depths of convection in the Greenland, Labrador and Irminger Seas. Despite the improvements, comparison with observations shows the heat transport still to be too weak. Other outstanding problems include an incorrect Gulf Stream pathway, a too strong Antarctic Circumpolar Current, and a too weak renewal of Antarctic Intermediate Water. Nevertheless, the model has been coupled to the atmospheric GCM ECHAM5 and run successfully for over 250 years without any surface flux corrections.  相似文献   

13.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨。为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析。分析结果表明副极地海区表层密度变化领先大西洋径向翻转环流(MOC)变化7 a,北大西洋暖流的变化领先 MOC变化4 a,格陵兰-苏格兰海脊溢流水强度(包括丹麦海峡溢流水和法鲁海峡溢流水,是北大西洋深层水的重要来源)的变化领先 MOC的变化3 a;北大西洋大气要素变化对北大西洋热盐环流年代际振荡有非常重要的调制作用,当副极地流环和北大西洋暖流(NAC)达到最强的2 a之前,高纬度地区大气为气旋式环流异常,中纬度地区大气为反气旋式环流异常,海表热通量在大西洋副极地海区是负异常,这都有利于副极地流环和NAC的加强,更多高盐度的北大西洋水进入格陵兰-冰岛-挪威海(GIN)海域,由此可以导致GIN海域表层密度上升,使水体的层结稳定性减弱,有利于深层对流的发生,同时大气变化通过风应力旋度和海表热通量也直接影响GIN海域深层水的生成,进而导致格陵兰-苏格兰海脊溢流水的强度增加。  相似文献   

14.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨.为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析.分析结果表明副极地海区表...  相似文献   

15.
Effects of the presence of a circumpolar region on buoyancy-driven circulation are investigated by using an idealized numerical ocean model. Comparison of circulation and meridional density (heat) transport is made between a closed ocean and an ocean with a cyclic gap near its southern boundary. The presence of the circumpolar region leads to disconnection of the meridional overturning across the circumpolar region. And the circumpolar eastward flow reaches the bottom of the ocean. It is essential for this that the pycnocline is deeper than the bottom of the gap. Since the amount of the mass transported northward must return southward at the levels deeper than the bottom of the cyclic gap, the weak stratification, hence weak vertical geostrophic shear, at the deeper levels leads to inactive communication across the circumpolar region. Meridional heat transport across the circumpolar region is made mainly by horizontal diffusion for the ocean with the cyclic gap, while the contribution of the advection is dominant for the closed ocean. Sensitivity of meridional heat transport to change in horizontal diffusivity is studied. The meridional heat transport for the ocean with the cyclic gap is more sensitive than for the closed ocean. The change in heat transport occurs not only in the circumpolar region but also in the rest of the ocean. It is suggested that subgrid scale phenomena, especially mesoscale eddies, in the circumpolar region controls the whole ocean to a great extent.  相似文献   

16.
17.
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air–sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air–sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).  相似文献   

18.
Using an idealized ocean general circulation model, we examine the effect of “mixing hotspots” (localized regions of intense diapycnal mixing) predicted based on internal wave-wave interaction theory (Hibiya et al., 2006) on the meridional overturning circulation of the Pacific Ocean. Although the assumed diapycnal diffusivity in the mixing hotspots is a little larger than the predicted value, the upwelling in the mixing hotspots is not sufficient to balance the deep-water production; out of 17 Sv of the downwelled water along the southern boundary, only 9.2 Sv is found to upwell in the mixing hotspots. The imbalance as much as 7.8 Sv is compensated by entrainment into the surface mixed layer in the vicinity of the downwelling region. As a result, the northward transport of the deep water crossing the equator is limited to 5.5 Sv, much less than estimated from previous current meter moorings and hydrographic surveys. One plausible explanation for this is that the magnitude of the meridional overturning circulation of the Pacific Ocean has been overestimated by these observations. We raise doubts about the validity of the previous ocean general circulation models where diapycnal diffusivity is assigned ad hoc to attain the current magnitude suggested from current meter moorings and hydrographic surveys.  相似文献   

19.
The problem of understanding linear predictability of elements of the ocean circulation is explored in the Atlantic Ocean for two disparate elements: (1) sea surface temperature (SST) under the storm track in a small region east of the Grand Banks and, (2) the meridional overturning circulation north of 30.5°S. To be worthwhile, any nonlinear method would need to exhibit greater skill, and so a rough baseline from which to judge more complex methods is the goal. A 16-year ocean state estimate is used, under the assumption that internal oceanic variability is dominating externally imposed changes. No evidence exists of significant nonlinearity in the bulk of the system over this time span. Linear predictability is the story of time and space correlations, and some predictive skill exists for a few months in SST, with some minor capability extending to a few years. Sixteen years is, however, far too short for an evaluation for interannual, much less decadal, variability, although orders of magnitude are likely stably estimated. The meridional structure of the meridional overturning circulation (MOC), defined as the time-varying vertical integral to the maximum meridional volume transport at each latitude, shows nearly complete decorrelation in the variability across about 35°N—the Gulf Stream system. If a time-scale exists displaying coherence of the MOC between subpolar and subtropical gyres, it lies beyond the existing observation duration, and that has consequences for observing system strategies and the more general problem of detectability of change.  相似文献   

20.
利用50 a的SODA资料对1月(冬季)和7月(夏季)印度洋越赤道经向翻转环流的年际变化进行研究。通过对2类典型年份的合成分析指出:1月份正异常年对应的经向翻转环流偏强,向北的经向热输送增加;7月份正异常年对应的经向翻转环流则偏弱,向南的经向热输送减少;1月份和7月份的负异常年皆与其正异常年相反;越赤道经向翻转环流有明显的年际变化,平均周期在4 a左右;经向翻转环流的年际变化和海面风场的变化密切相关。提出了反映1月和7月此环流年际变化的几个指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号