首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 298 0 ) as well as the enthalpy ( H f,298 0 ) and Gibbs free energy ( G f,298 0 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 298 0 67.8±3.9 cal deg–1 gfw–1 63.7±3.9 cal deg–1 gfw–1 H f,298 0 –1417.9±2.7 kcal gfw–1 –1420.2±2.6 kcal gfw–1 G f,298 0 –1327.4±4.0 kcal gfw–1 –1328.5±4.0 kcal gfw–1.Adapted from a part of the author's Habilitationsschrift accepted by the Ruhr University, Bochum (Chatterjee, 1968).  相似文献   

2.
The Archean Eye Dashwa Lakes pluton (2672±24 Ma) has domains of mineralogically fresh isotropic granite, domains that have undergone bulk hydrothermal alteration, and at least eleven sets of sequential fracture arrays, each with distinctive mineral assemblages. Fresh granite is characterized by whole rock 18O=8.1 to 8.6 and primary magmatic quartz-feldspar (+1.3), quartz-biotite (5.2 to 5.4) and quartz-magnetite (+9.8) fractionations. Magmatic fluids had a calculated isotopic composition of 18O=7.9±0.5, and D=–80±5. These isotropic volumes of the granite have not experienced significant incursion of external thermal waters. Pegmatites, quartz-molybdenite veins, and phlogopite-muscovite coated fractures are sporadically distributed in the granite, and were precipitated from high-temperature magmatic fluids where 18O=8.0 to 10.3 and D=–80±5.The most abundant variety of fracture filling assemblage is epidote-quartz-chlorite±muscovite: fractures are bounded by domains of mineralogically similar bulk hydrothermal alteration of the granite. These minerals formed at 160 to 280° C, in the presence of NaCl, and NaCl-MgCl2 brines (up to 25 wt% NaCl equivalent) of probable evolved marine water origin ( 18O=+0.4 to +3.8, D=–10 to –35) undergoing transient boiling. Upper plateau 40Ar/39Ar ages for the muscovite are 2650±15 Ma. Sequentially in the chronology of fracture-infiltration events, calcite-fluorite veins were deposited from boiling fluids at 340 to 390° C, isotopically characterized by 18O=4.7 and 13C=–5; and rare prehnite-chlorite lined fractures formed at 250 to 290° C. A generation of adularia-bearing veins precipitated at 140 to 230° C, from CaCl2-NaCl brines, where 18O=0 to –6.5 and D=–10 to –30. Incremental 40Ar/39Ar age spectra on the K-feldspar yield an upper plateau of 1100 Ma. Subsequently, hematite developed during reactivation of earlier fractures, at 140 to 210° C in the presence of fluids characterized by 18O=–0.4 to –5.4 and D=–15 to –25. Arrays of open fractures partially occupied by gypsum and goethite reflect a fluid infiltration event at temperatures <50° C. Many of the earlier generations of fracture minerals have transgranular fracture infillings which record the presence of low temperature (88–190° C), hypersaline CaCl2-NaCl brines. Narrow fractures lined with clays±calcite are sites for seepage of modern ground-waters. The isotopic signature of clay ( 18O=12 to 20, D=–80±5) plots near the line for modern kaolinites, confirming its formation in the presence of recent surface waters. Calcites coexisting with the clay minerals, and in fractured pegmatite show a common isotopic signature ( 18O=23±0.5, 13C=–13.6), indicating precipitation from modern groundwaters, where reactivated fractures have acted as conduits for infiltration of surface waters to depths of 200 m. Intermittent fracture-infiltration has occurred over 2.7 Ga. The early sequences of fracture-related fluid flow are interpreted in terms of devolatilization of the granite, followed by thermal contraction fracturing, incursion of marine water and convective cooling in the Archean. Hematite and adularia fracture fillings correspond to a stage when meteoric water infiltrated the volcanicplutonic terrain during Proterozoic and later times. Episodic fracture-fluid expulsion events may have been driven by seismic pumping, in response to magmatically and tectonically induced stresses within the Shield, with surface waters penetrating to depths of 15 km in the crust.  相似文献   

3.
The assemblage paragonite + quartz is encountered frequently in low- to medium-grade metamorphic rocks. With rising grade of metamorphism they react mutually to yield the condensed assemblage albite + Al2SiO5.The univariant curve pertaining to the equilibrium paragonite + quartz=albite + andalusite + H2O has been located experimentally. The reversed P H 2 O-T data are: 1 kb: 470–490° C 2 kb: 510–530° C 3 kb: 540–560° C 4 kb: 560–580° C 5 kb: 590–600° C The univariant curve pertaining to the equilibrium paragonite + quartz=albite + kyanite + H2O runs through the following P H 2 O-T-intervals: 5 kb: 570–625° C 6 kb: 600–630° C 7 kb: 620–640° C Thermodynamic calculations of S 298 0 , H f,298 0 and G f,298 0 of the phase paragonite from the experimental data presented above and those obtained from the equilibria of the reaction paragonite=albite + corundum + H2O (Chatterjee, 1970), agree within the limits of uncertainty. This prompts the idea that Zen's (1969) suggestion of a possible error of approximately 7 kcal in G f,298 0 of the Al2SiO5 polymorphs may in fact be due to an error of similar magnitude in G f,298 0 of corundum.A best estimate of S 298 0 , H f,298 0 and G f,298 0 of paragonite based on these considerations yield: S 298 0 : 67.61±3.9 cal deg–1 gfw–1 H f,298 0 : –1411.4±2.7 kcal gfw–1 G f,298 0 : –1320.9±4.0 kcal gfw–1 These numbers will be subject to change when better thermochemical data on corundum and albite are available.In medium-grade metamorphic rocks the assemblage paragonite + quartz is commonly found in stable coexistence with such other phases as muscovite, staurolite, andalusite, kyanite, but not with cordierite or sillimanite. However, the assemblage paragonite-sillimanite has been reported to be stable in the absence of quartz. All these petrologic observations can be explained on the basis of the stability data of the phases and phase assemblages concerned.  相似文献   

4.
In the system CaO-MgO-A12O3-SiO2 the tie lines connecting anorthite with other phases are sequentially broken down with increasing pressure according to the following univariant reactions: anorthite+ enstatitess+sillimanite pyrope-grossularss+quartz (3), anorthite+enstatitess pyrope-grossularss+diopsidess+quartz (2), anorthite+pyrope-grossularss+ quartz diopsidess+kyanite (4) and anorthite+diopsidess grossular-pyropess +kyanite+quartz (8). At 1,200 ° C these reactions occur at 14.5± 0.5, 15.5±0.5, 19.5±0.5 and 26.4±1 kilobar and have positive slopes (dP/dT) of 1±0.5, 2.8±0.5, 13.3±0.5 and 24±2bars/°C respectively. An invariant point involving kyanite rather than sillimanite, occurs at 850 °C±25 °C and 14.5±0.5kbar at the intersection of reactions (3), (2) and (4). Reaction(4) exhibits significant curvature with an increase in dP/dT from 13.3±0.5 to 18.5± 0.5 bars/°C between 1,050° and 850° C. The pressure at which the complete grossular-pyrope join is stable with quartz is estimated at 41 ± 1 kbar at 1,200 ° C. The pressure at which garnet appears according to reaction (2) is lowered by 5 kbar for a composition with anorthite and orthopyroxene (En0.5Fs0.5). Enstatite and plagioclase (An0.5Ab0.5) first produce garnet at 2 kbar higher pressure than enstatite and pure anorthite (reaction (2)). The calcium content of garnet in various divariant assemblages is relatively insensitive to temperature but very sensitive to pressure, it is therefore a useful geobarometer. At metamorphic temperatures of 700–850 °C pressures of 8–10 kbar are required for the formation of quartz-bearing garnet granulites containing calcic plagioclase and with (Mg/Mg+Fe) bulk = 0.5.  相似文献   

5.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

6.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p max4 kbar, T max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma.  相似文献   

7.
High-pressure, low-temperature metamorphic Mn-rich quartzites from Andros and Evvia (Euboea) islands, Greece, situated in the Eocene blueschist belt of the Hellenides, reveal different Mn-Al-Ca-Mg-silicate assemblages in response to variable metamorphic grade. On Evvia, piemontite- and/or braunite-rich quartzites which are associated with low-grade blueschists (T<400° C, P> 8 kbar) show the principle mineral assemblage quartz + montite + sursassite + braunite + Mg-chlorite + hematite + rutile + titanite. The Mn-Al-silicate sursassite, basically (Mn2+, Ca)4 Al2(Al, Fe3+, Mn3+, Mg)4Si6O21(OH)7, thus far reported as a rare mineral, locally occurs as a rockforming mineral in cm- to m-thick layers. On Andros, higher-grade quartzites (T450–500° C, P>10 kbar) of similar composition contain the assemblage quartz + piemontite + spessartine + braunite + Mg-chlorite+hematite + phengite+ phlogopite + rutile. Rare sursassite is present only as a relict phase. Additional, mostly accessory minerals in quartzites from Evvia and Andros are ardennite, Na-amphibole, acmitic clinopyroxene, albite, apatite, and tourmaline. The chemical composition of the main phases is characterized in detail.Disequilibrium textures and mineral compositions in some samples from Andros and Evvia imply the reactions sursassite + braunite + quartz = spessartine+clinochlore±hematite + H2O + O2 (1) sursassite + braunite + phengite + quartz = spessartine + phlogopite±hematite + H2O + O2 (2) and in braunite-free assemblages sursassite + Mn3+Fe –1 3+ [hematite, piemontite] + hematite + quartz = spessartine + clinochlore + H2O+O2 (3) Reactions (1) to (3) have positive P-T slopes. They are considered to account for the breakdown of sursassite and the formation of spessartine during prograde metamorphism of the piemontite quartzites and related rocks. P-T data from Andros and Evvia and geological data from few other occurrences reported suggest sursassite+ quartz±braunite to be stable at T<400–450° C over a considerable pressure interval at least up to 10 kbar. Theoretical phase relations among Mn3+-Mn2+-silicates in the pseudoquaternary system Al-Mn-Ca-Mg with excess quartz, H2O, and O2 indicate that low-grade assemblages containing sursassite (±braunite±pumpellyite±viridine±piemontite + quartz) are likely precursors of higher-grade assemblages including spessartine, Mg-chlorite, braunite, viridine, and piemontite reported from greenschist-, amphibolite-, and high-grade blueschist-facies rocks of appropriate composition.  相似文献   

8.
Hydrothermal experiments with mixtures of synthetic minerals have shown the reversibility of the reaction 5 phlogopite + 6 calcite + 24 quartz = 3 tremolite + 5 K-feldspar + 2 H2O + 6 CO2. In an isobaric T – diagram the equilibrium curve reaches a maximum at = 0,75. The P, T-values for this maximum are: 2 kb-523°; 4 kb-585°; 6 kb-625°; P±5%, T±10° C. These results give a first approximation of the P, T conditions responsible for a similar mineral reaction which has been recorded from natural metamorphic assemblages.

Herrn Prof. H. G. F. Winkler danke ich für anregende Diskussionen, desgleichen Herrn Dr. D. Puhan für wichtige Hinweise und Mitteilung seiner exp. Daten. Herrn Prof. V. Trommsdorff und Herrn P. H. Thompson bin ich für petrographische Angaben zu Dank verpflichtet. Der Aufbau der Hydrothermalanlage und die Finanzierung der laufenden Untersuchungen wurde aus den Mitteln des Fonds zur Förderung der wissenschaftlichen Forschung ermöglicht. Für diese Unterstützung gilt daher mein besonderer Dank.  相似文献   

9.
Summary At the northeastern flank of Gebel Yelleq, northern Sinai, pure limestones of Upper Cretaceous age were subjected to a thermal overprint, caused by a c. 80m thick Tertiary olivine dolerite sill. Metasomatic supply of Si, Al, Fe, Mg and Ti was greater to the c. 7m wide upper than to the c. 25m wide lower thermal aureole. The greater width of the lower aureole is possibly due to a longer duration of the thermal overprint at this contact. Mineral assemblages in both aureoles are (from the contact outward):(i) clinopyroxene + garnet ± wollastonite + calcite(ii) garnet ± wollastonite + calcite;(iii) wollastonite + calcite.In places, late stage xenoblasts of apophyllite and witherite overgrow these assemblages. Garnets are grandites to melanites with Grs56–86Adr14–42Sch0–2Sps0–0.2Prp0 in the lower, and Grs29–94Adr5–64Sch0–12Sps0–0.2Prp0–1.7 in the upper aureole. Close to the upper contact, clinopyroxene is virtually pure diopside with X Mg = Mg/(Mg + Fe2+) = 0.97–1.0, whereas clinopyroxenes farther away from the upper contact and in the lower aureole have X Mg-values of 0.49 and 0.53, respectively.The minimum temperatures reached during contact metamorphism in the upper and lower aureole are defined by the lower stability limit of wollastonite. The temperatures are inferred with a calculated T-X(CO2) projection in the system CMASCH and are estimated at c. 290 °C and 380 °C for X(CO2) values of 0.05 and 0.25, respectively. A pressure of roughly 100 bar is estimated for the lower dolerite-limestone contact. As indicated by one-dimensional thermal modelling, a maximum temperature of 695 °C was attained at this contact, assuming a magma temperature of 1150 °C. Further modelling results indicate (i) wollastonite, which occurs first 13 m away from the lower contact, formed at a maximum temperature of c. 575 °C, (ii) there, wollastonite formation lasted for approximately 170 years and, (iii) at the outer rim of the lower aureole, the maximum temperature reached was 480 °C, and temperatures sufficient for wollastonite formation lasted for about 140 years.  相似文献   

10.
The monovariant reaction Opx+H2O Cum+Ol+Q and the Cum+Opx+Q stability field were studied under hydrothermal conditions at P total=2940, 4900 bar and the oxygen fugacity of the QFM buffer. Under these conditions, the Opx lower stability brackets were 730°±10° and 740°±5° C, respectively. The kinetics of the reactions in the Cum+ Opx+Q mixture showed that there were only minor differences in the equilibrium compositions of the coexisting Opx and Cum over the 740°–780° C range. At T=780°, 760° and 740° C, the FeO/FeO+MgO ratio, in mol% was: Opx52.5–Cum49.5, Opx62–Cum57, Opx72–Cum66 (P=2940 bar) and Opx62–Cum58.5 Opx71.5–Cum66.5, Opx80–Cum75 (P= 4900 bar). The results are in good agreement with earlier studies in the Opx+Ol+Q and Cum+Ol+Q assemblages.Abbreviations Opx Orthopyroxene - Ol olivine - Cum cummingtonite - Mt magnetite - Q quartz - tk talc  相似文献   

11.
In P - T - logfO2 space, the stability of annite (ideally KFe 3 2+ (OH)2AlSi3O10) at high fO2 (low fH2) is limited by the reaction: annite = sanidine + magnetite + H2. Using the hydrogen-sensor technique, the equilibrium fH2 of this reaction was measured between 500 and 800° C at 2.8 kbar in 50° C intervals. Microbrobe analyses of the reacted annite+sanidine+magnetite mixtures show that tetrahedral positions of annite have a lower Si/Al ratio than the ideal value of 3/1. Silicon decreases from 2.9 per formula unit at low temperatures to 2.76 at high temperatures. As determined by Mössbauer spectroscopy in three experimental runs, the Fe3+ content of annite in the equilibrium assemblage is 11%±3. A least squares fit to the hydrogensensor data gives H R 0 = 50.269 ± 3.987 kJ and S R 0 = 83.01 ± 4.35 J/K for equilibrium (1). The hydrogene-sensor data are consistent with temperature half brackets determined in the classical way along the nickel-nickel oxide (NNO) and quartz-fayalite-magnetite (QFM) buffers with a mixture of annite+sanidine+magnetite for control. Compared to published oxygen buffer reversals, agreement is only found at high temperature and possible reasons for that discrepancy are discussed. The resulting slope of equilibrium (1) in logfO2T dimensions is considerably steeper than previously determined and between 400 and 800°C only intersects with the QFM buffer curve. Based on the hydrogen-sensor data and on the thermodynamic dataset of Berman (1988, and TWEEQ data base) for sanidine, magnetite and H2, the deduced standard-state properties of annite are: H f 0 =-5127.376±5.279 kJ and S 0=422.84±5.29 J/(mol K). From the recently published unit cell refinements of annites and their Fe3+ contents, determined by Mössbauer spectroscopy (Redhammer et al. 1993), the molar volume of pure annite was constrained as 15.568±0.030 J/bar. A revised stability field for annite is presented, calculated between 400 and 800°C.  相似文献   

12.
Sector zoning has been experimentally reproduced in CaMgSi2O6-CaTiAl2O6 clinopyroxene crystals by isothermal crystallization using seed crystals. Element partitioning in different growth sectors and between the core and rim portions in single crystals was analysed in relation to growth rate R and degree of supercooling T. The TiO2 and Al2O3 contents increase with increase in R and T, but when they are compared between different sectors in a single crystal grown at the same T, they correlate negatively with R. The order of faces in respect of contents of TiO2 and Al2O3 is (100)>(110)(010)(111) at T= 13° C and 18° C but changes to (110)>(100)>(010)>(111) at T= 25° C. The growth mechanism is concluded to be controlled by interface kinetics at T= 13–25° C for all these faces, while at T=45° C this relation holds for (100) and (010) faces, but not for (110) and (111), based on the growth rate versus supercooling relation and surface microtopographic observations. The interface kinetics play the essential role in the formation of sector zoning, when the layer growth mechanism takes place.  相似文献   

13.
The solubility of calcite in H2O was measured at 6–16 kbar, 500–800 °C, using a piston-cylinder apparatus. The solubility was determined by the weight loss of a single crystal and by direct analysis of the quench fluid. Calcite dissolves congruently in the pressure (P) and temperature (T) range of this study. At 10 kbar, calcite solubility increases with increasing temperature from 0.016±0.005 molal at 500 °C to 0.057±0.022 molal at 750 °C. The experiments reveal evidence for hydrous melting of calcite between 750 and 800 °C. Solubilities show only a slight increase with increasing P over the range investigated. Comparison with work at low P demonstrates that the P dependence of calcite solubility is large between 1 and 6 kbar, increasing at 500 °C from 1.8×10–5 molal at 1 kbar to 6.4×10–3 molal at 6 kbar. The experimental results are described by:
where T is in Kelvin and H2O is the density of pure water in g/cm3. The equation is applicable at 1–20 kbar and 400–800 °C, where calcite and H2O stably coexist. Extrapolated thermodynamic data for indicates that the dominant dissolved carbon species is CO2,aq at all experimental conditions. The results require that equilibrium constant for the reaction:
increases by several orders of magnitude between 1 and 6 kbar, and also rises with isobaric T increase. Published thermodynamic data for aqueous species fail to predict this behavior. The increase in calcite solubility with P and T demonstrates that there is a strong potential for calcite precipitation during cooling and decompression of water-rich metamorphic fluids sourced in the middle to lower crust.Editorial responsibility: T.L. Grove  相似文献   

14.
The univariant reaction governing the upper stability of heulandite (CaAl2Si7O18·6H2O), heulandite=laumontite+3 quartz+2H2O (1), has been bracketed through reversal experiments at: 155±6° C, 1000 bar; 175±6° C, 1500 bar; and 180±8° C, 2000 bar. Reversals were established by determining the growth of one assemblage at the expense of the other, using both XRD and SEM studies. The standard molal entropy of heulandite is estimated to be 783.7±16 J mol–1 K–1 from the experimental brackets. Predicted standard molal Gibbs free energy and enthalpy of formation of heulandite are –9722.3±6.3 kJ mol–1 and –10524.3±9.6 kJ mol–1, respectively. The reaction (1), together with the reaction, stilbite=laumontite+3 quartz+3 H2O, defines an invariant point at which a third reaction, stilbite=heulandite+ H2O, meets. By combining the present experimental data with past work, this invariant point is located at approximately 600 bar and 140° C. Heulandite, which is stable between the stability fields of stilbite and laumontite, can occur only at pressures higher than that of the invariant point, for = P total.These results are consistent with natural parageneses in low-grade metamorphic rocks recrystallized in equilibrium with an aqueous phase in which is very close to unity.  相似文献   

15.
Experimental investigations between 800 ° to 1,100 ° C yielded no evidence for extensive substitution of Mn2++Si4+2Mn3+ in braunite, leading to a complete solid solution series between partridgeite (Mn2O3) and braunites with silica contents up to 40 wt. % as proposed by Muan (1959a, b). In the presence of excess manganese braunite of nearly ideal composition coexists at 800 ° C with partridgeite and at T1,000 ° C with hausmannite (Mn3O4). At 800 ° C and 1,000 ° C braunite coexists, in the presence of excess silica, with a SiO2-polymorph and at 1,100 ° C with rhodonite (MnSiO3). Quantitative analysis of the X-ray patterns of coexisting cristobalite and braunite confirms a maximum silica-excess in braunite of only about 2 wt.% over the ideal composition, Mn2+Mn 6 3+ SiO12.  相似文献   

16.
Stability of titanian clinohumite: Experiments and thermodynamic analysis   总被引:2,自引:0,他引:2  
Reversed hydrothermal experiments on a natural titanoclinohumite [Ti-Cl; approximate formula Mg7.5FeTi0.5O16(OH)] show that it breaks down at 475°±11° C (3.5 kbar), 620°±11° C (14 kbar) and 675°±8° C (21 kbar) to the assemblage olivine +ilmenite+vapor. An internal-consistency analysis of the data yields r G s /0 (298 K, 1 bar)=36,760±3,326 cal (mole Ti-Cl)–1. r S s /0 (298 K, 1 bar)=34.14±5.91 cal deg–1(mole Ti-Cl)–1. Linear correlation coefficient r G–S 1.0. A solution model that accounts for TiO2-M(OH)2 and F-OH substitution shows that the results for our nearly F-free Ti-Cl are in reasonable agreement with the unreversed breakdown experiments of Mer-rill et al. (1972) on a F-bearing Ti-Cl.Because fluorine is necessary to stabilize Ti-Cl under mantle conditions, we suggest that Ti-Cl is much more likely to be a storage device for fluorine than for water in the mantle.  相似文献   

17.
In contrast to Ferry (1980) (X Ca)-values in garnet even lower than 0.1 have a significant effect on the calculated equilibrium temperature using the experimental calibration of the Fe and Mg paritioning between garnet and biotite. Garnet compositions and Mg/Fe — distribution coefficients from samples of the Eoalpine staurolite — in zone in the southern Ötztal are related by the quadratic regression equation: InK D= -1.7500 (±0.0226) + 2.978 (±0.5317)X Ca Gt -5.906(±2.359)(X Ca Gt )2 Temperatures derived by the Ferry and Spear (1978) calibration using chemistry — correctedK D values are petrologically realistic.Analysis of our data supports non ideal mixing of grossular with almandine — pyrope solid solution. The derived excess mixing energies are quite small for the almandine — pyrope solution (W FeMg= –133 cal/mole) and about +2775 cal/mole for the difference between pyrope-grossular and almandine-grossular solutions (W MgCaW FeCa) at metamorphic conditions of 570° C and 5,000 bar. The mixing parameters proposed by Ganguly and Saxena (1984) are not confirmed by our data as they would result in significantly lower temperatures.  相似文献   

18.
Zusammenfassung Admontit ist ein neues Magnesiumborat, das in der Gipslagerstätte Schildmauer bei Admont in der Steiermark (Österreich) in Vergesellschaftung mit drei weiteren neuen borhaltigen Mineralien sowie Gips, Anhydrit, Hexahydrit, Löweit, Quarz und Pyrit auftritt.Das Mineral bildet undeutlich ausgebildete farblose Kristalle von monokliner Symmetrie, die zum Teil nachc gestreckt und tafelig nach {100} sind. Keine Spaltbarkeit, Bruch muschelig, Härte wahrscheinlich 2–3,D gem .=1,82,D x =1,875g·cm–3;n =1,442±0,002,n =1,504±0,002, 2V 30°,r. AE(010),n c auf (010) ca. 45°. a 0=12,68,b 0=10,07,c 0=11,32 Å (alle Werte±0,02 Å),=109,68° (±0,1°),Z=2, RaumgruppeP21/c. Stärkste Linien des Pulverdiagramms: 12,08(9), 7,60(10), 3,93(8), 2,68(9). Formel: 2 MgO·6 B2O3·15 H2O. In Wasser wird Admontit langsam zersetzt. Erhitzungsversuche zeigten, daß das Gitter zwischen 100 und 200°C zerstört wird. Ein Teil des Wassers entweicht schon unterhalb 100°C, der Rest zwischen 150 und 350°C.
Admontite, a new borate mineral from the gypsum deposit Schildmauer near Admont in Styria (Austria)
Summary Admontite is a new magnesium borate found in the gypsum deposit of Schildmauer near Admont in Styria (Austria) in association with three other new borium-containing minerals and with gypsum, anhydrite, hexahydrite, löweite, quartz and pyrite.The mineral occurs in poorly developed colourless crystals of monoclinic symmetry, which in part are elongated along thec axis and flattened on {100}. No cleavage, fracture conchoidal, hardness probably 2–3,D meas .=1.82,D x =1.875g·cm–3.n =1.442±0.002,n =1.504±0.002, 2V 30°,r. AE(010),n c on (010) about 45°.a 0=12.68,b 0=10.07,c 0=11.32 Å (all±0.02 Å), =109.68° (±0.1°),Z=2,space groupP21/c. Strongest lines of the powder pattern: 12.08(9), 7.60(10), 3.93(8), 2.68(9). Chemical composition: 2 MgO·6 B2O3·15 H2O. Admontite is slowly decomposed in water. Investigations of the thermal behaviour show that the lattice breaks down between 100 and 200°C. Part of the water escapes already under 100°C, the rest between 150 and 350°C.


Mit 1 Abbildung

Herrn Univ. Prof. Dr.H. Meixner zum 70. Geburtstag gewidmet.  相似文献   

19.
Divariant oxide plus metal assemblages potentially make useful redox sensors for use in hydrothermal and other high pressure experiments. Here we report the calibration of the (Ni, Mn)O/Ni redox sensor in which the Ni/NiO (NNO) oxygen buffer is displaced to lower oxygen chemical potentials (O2), by the solid solution of MnO in the oxide phase. This assemblage was chosen because: (1) it covers a useful range of O2; (2) the system can be calibrated very accurately. Values of O2 defined by the (Ni, Mn)O/Ni assemblage were determined electrochemically, from 900 to 1300 K, using calcia-stabilized zirconia solid electrolytes. The oxide compositions (8 in total, ranging from 0.1X NiO0.8) were analysed afterwards by electron microprobe, and were checked for internal consistency by measuring the lattice parameters (a0), using powder XRD. The accuracies of the measurements, both assessed theoretically and established empirically, are (1): ±80J/mol in O2, ±0.0002 Å in a0 and ±0.002 to 0.005 in X NiO. Activity-composition relations were fitted to the Redlich-Kister formalism. There is a slight asymmetry (corresponding to a subregular model) across the solution with A 0 G =9577(±45) J/mol, and A 1 G =–477(±80) J/mol. The experimental data were also used to derive the parameters Vex, Hex and Sex. There is no obvious relationship between excess volumes and enthalpies of mixing, nor between excess volumes and excess entropies. The experimental data from this study have been used to formulate the (Ni, Mn)O/Ni redox sensor expression: O2 = 2(NNO) + 2RTlnX NiO + 2(1 – X NiO)2[11483 – 1.697T] – 477(4X NiO – 1)(900 < T(K) < 1300) where O2(NNO)=–478967+248.514T–9.7961 T In T, from O'Neill and Pownceby(1993a).  相似文献   

20.
Recent experimental studies have shown that the rates of Al–Si order-disorder and interdiffusion in alkali feldspars at high pressures under dry conditions increase dramatically in the approximate pressure range 7–14 kb, depending on temperature and feldspar composition (Goldsmith 1987, 1988). Enhancement of Al–Si interdiffusion rates is ascribed to the involvement of hydrogen, but the species of hydrogen involved is undetermined.A simple kinetic analysis of the data of Goldsmith (1987) on disordering of dry albite at 800°–950° C and 6–24 kb in the solid media press is consistent with the NaCl pressure cell acting as a proton donor by enhancing dissociation of water in the pressure medium, generating a high in the experimental environment. The rate constant for disordering of albite is found to increase linearly with the estimated experimental and with the density of aqueous salt solution, implicating H+ as the rate-enhancing species.Further experimental studies confirm the importance of . At 16 kb and 850° C, dry albite in sealed Pt capsules in a NaCl cell containing tantalum powder (which reduces H2O to H2) remains highly ordered over the same time that complete disordering would occur in the absence of Ta. H2 cannot therefore be the rate-enhancing species. At 1 kb and 850° C, the extent of Al–Si disorder in albite in direct contact with various NaCl–H2O solutions increases from partially disordered for pure H2O to completely disordered for saturated aqueous NaCl solution, giving strong support to the proton model. SIMS scanning ion imaging of albite run products demonstrates conclusively that solution-reprecipitation is not responsible for enhanced disordering rates.Results of disordering experiments in the solid media apparatus cannot be duplicated in Ar gas media internally-heated pressure vessels, even with the same experimental configuration around the albite-bearing capsules, due to the different proton-buffering capacities of the solid and gas media apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号