首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissolved (dialysis in situ) and total concentrations ofCu, Zn, Cd and Al in eight mining polluted rivers in the Røros area, central Norway, were determinedby atomic absorption spectrometry (flame and graphite furnace) and compared to pH, Caconcentration and alkalinity through seasonal variations in river discharge. Totalconcentrations of the metals were highest during early spring flood and during summer andautumn rain episodes. Dissolved concentrations also increased as the spring floodproceeded, but small discharge peaks within this 2 month period as well as a considerableautumn flood episode appeared to lower rather than to raise the dissolved metal concentrations.Consequently the dissolved fractions of Zn, Cd and Al showed a significant negative correlationwith river discharge, and were low at the discharge peaks. Possibly high sediment concentrationsoccurring at high flood conditions more than counteracted desorption induced by pHdecrease, and led to decreased dissolved fractions through adsorption. Cu speciationon the other hand seemed to be more closely linked to pH. Alkalinity and Ca concentration,both assumed to protect aquatic life from metal pollution, were significantly lowerduring episodes with high Cu and Al total concentrations.  相似文献   

2.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   

3.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

4.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

5.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

6.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

7.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

8.
New data are presented on the contents of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in dissolved and particulate modes of occurrence in unpolluted or anthropogenically contaminated major rivers of Primorye. The background contents of dissolved metals are as follows: 0.1–0.5 μg/l for Zn and Ni, 0.3–0.7 μg/l for Cu, 0.01–0.04 μg/l for Pb and Cd, and 2–20 μg/l for Fe and Mn. Common anthropogenic loading (communal wastewaters) notably increases the dissolved Fe and Mn concentrations Industrial wastes lead to a local increase in the contents of dissolved metals in river waters by one to three orders of magnitude. The effect of hydrological regime is expressed most clearly in the areas of anthropogenic impact. The metal contents in the particulate matter are controlled mainly by its granulometric composition. Original Russian Text ? V.M. Shulkin, N.N. Bogdanov, V.I. Kiselev, 2007, published in Geokhimiya, 2007, No. 1, pp. 79–88.  相似文献   

9.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

10.
湖南洞庭湖水系As和Cd等重金属元素分布特征及输送通量   总被引:9,自引:1,他引:8  
土壤地球化学调查显示,长江沿岸,尤其湖南洞庭湖流域存在以镉为主的重金属高值带。为进一步确定As和Cd等重金属元素在河流中的存在形式、迁移方式和通量等地球化学特征,本研究在洞庭湖水系主要干支流的关键位置布置采样点,分夏季丰水期和冬季枯水期两次,采集了原水、0.45μm过滤水和0.20μm过滤水等水样品,以及悬浮物固体样品,分析了水和悬浮物样品中As和Cd、Pb等重金属元素含量。结果发现,As元素在湘江、资水、湘江上游支流西河和耒水中含量最高,耒水、西河及湘江的Pb、Zn含量相对偏高,Cd在湘江、耒水及汨罗江的含量也明显高于其他河流;研究区河水中As、Ni、Cd和Zn等元素在水中离子态比例较大,其溶解态含量受河水pH和温度的控制,湘江、西河、耒水和汨罗江中悬浮物As、Zn、Cu、Cd、Pb和Cu等元素含量远高于其他水系悬浮物,这与这些流域内存在多金属矿区密切相关;不同元素在河水中迁移途径有很大差别,As以溶解态和胶体态为主要迁移形式,Pb、Zn、Cu、Cd和Ni等重金属元素以悬浮物形式迁移的比例最大;主要入湖河流中,湘江输入洞庭湖的As、Zn、Cu和Cd总量最大,年通量分别为961.43 t、478.90 t、101.67 t、59.58 t。  相似文献   

11.
《Applied Geochemistry》2004,19(5):769-786
Heavy metal (Zn, Cd, Cu and Pb) mass balances in the Lot-Garonne fluvial system have been established for 1999 and 2000. The mean annual discharges of these years are close to the mean discharge of the previous decade. The estimated annual dissolved and particulate fluxes in this model watershed integrate daily input from diffuse and point sources, diffusive fluxes at the water/sediment interface, changes in the dissolved-particulate partition and changes in sediment stock. Cadmium, Zn, Cu and Pb entering the Gironde estuary via the Garonne River (11–14 t a−1 of Cd; 1330–1450 t a−1 of Zn; 126–214 t a−1 of Cu and 127–155 t a−1 of Pb) are mainly transported in the particulate phase and the major part (i.e. ∼74 to 96% for Cd, ∼60% for Zn, ∼50 to 60% for Cu and ∼80% for Pb) is transported by the Lot River. The main anthropogenic heavy metal point source is located in a small upstream watershed (Riou-Mort River) accounting for at least 47% (Cd), ∼20% (Zn), ∼4% (Cu) and ∼7 to 9% (Pb) of the total heavy metal inputs into the Garonne River, although it contributes only 1% of the discharge. Mass balances for 1999 suggest that under mean annual hydrologic conditions on the basin scale, the heavy metal budget of the Lot-Garonne fluvial system is balanced and that the stocks of Cd [200 t; Environ. Tech. 16 (1995) 1145] and Zn in the Lot River sediment are constant under mean discharge conditions. Heavy metal input by molecular diffusion at the sediment surface represents an important component of dissolved metal inputs into the system (e.g. 30% for Cu). Except for Cu, these dissolved inputs are totally removed from solution by SPM. Based on the generally constant Zn/Cd (∼50) concentration ratio in sediment cores from the polluted Lot River reaches and the sediment stock of Cd [200 t; Environ. Tech. 16 (1995) 1145], the present day Zn stock in the Lot River sediments has been estimated at about 10,000 t. In addition to the mobilization of river-bed sediment and associated heavy metals by intense floods, local human activities, including river-bed dredging, may strongly modify the heavy metal budget of the river system. In 2000, the dredging-related remobilization of polluted Lot River sediment released 2–6 t Cd. This additional Cd point source was estimated to account for 15–43% of the gross inputs into the Gironde Estuary.  相似文献   

12.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

13.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

14.
This study reports a multi-parameter geochemical investigation in water and sediments of a shallow hyper-eutrophic urban freshwater coastal lake, Zeekoevlei, in South Africa. Zeekoevlei receives a greater fraction of dissolved major and trace elements from natural sources (e.g., chemical weathering and sea salt). Fertilizers, agricultural wastes, raw sewage effluents and road runoff in contrast, constitute the predominant anthropogenic sources, which supply As, Cd, Cu, Pb and Zn in this lake. The overall low dissolved metal load results from negligible industrial pollution, high pH and elevated metal uptake by phytoplankton. However, the surface sediments are highly polluted with Pb, Cd and Zn. Wind-induced sediment resuspension results in increased particulate and dissolved element concentrations in bottom waters. Low C/N ratio (10) indicates primarily an algal source for the sedimentary organic matter. Variation in sedimentary organic C content with depth indicates a change in primary productivity in response to historical events (e.g., seepage from wastewater treatment plant, dredging and urbanization). Primary productivity controls the enrichment of most of the metals in sediments, and elevated productivity with higher accumulation of planktonic debris (and siltation) results in increased element concentration in surface and deeper sediments. Aluminium, Fe and/or Mn oxy-hydroxides, clay minerals and calcareous sediments also play an important role in adsorbing metals in Zeekoevlei sediments.  相似文献   

15.
In this study, spatial and seasonal dynamics of trace elements (Cu, Pb, Zn, Cd, As) in water and sediments were examined in the Pearl River Estuary (PRE), South China. The spatial variations of all the studied trace elements in sediments show the general decrease pattern from northwest to southeast side of the PRE, suggesting that the main sources of these trace elements may originate from terrestrial (rock and soil) weathering and human activities (e.g. agricultural, industrial and municipal wastewaters) via riverine inputs. The dissolved Cu, Pb, Cd, As, and Zn in PRE ranged from 0.34 to 3.26, 0.19 to 4.58, 0.0015 to 0.30, 0.16 to 8.18, 3.74 to 36.10 μg/L, respectively. There are obvious seasonal changes of dissolved trace elements in the PRE aquatic system. The maximum seasonal averages of all the dissolved trace elements excluding Zn were observed in summer, whereas dissolved Zn showed the minimum in this season. The overall spatial pattern of all the dissolved trace elements excluding Zn demonstrates decreasing trends from inshore to offshore, and the highest concentrations of dissolved Cu, Cd, As, and Zn appeared in the western part of PRE or the mouths of Pearl River, suggesting strong riverine and anthropogenic local inputs. PCA and correlation analysis show that the geochemical behavior of dissolved Cu and As are complicated and the dynamics of these two elements are controlled by various physicochemical parameters, whereas physicochemical parameters might play a relatively small role in the distributions of other studied trace elements.  相似文献   

16.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

17.
Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable Zn, Cd, and Pb contamination of the water, and suspended particulate matter (SPM).Chemical partition of the SPM shows that most (85-99 percent) of the Pb, but relatively low proportions of Zn (14-26 percent) and Cd (10–20 percent) are weakly bound to the SPM. Such particulate metal characteristics allow the real time effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow (0.1 cm/yr).Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd depending on the metal and their location relative to the tailings outfall and apparently responded almost instantly to the metal contamination, as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites as well as from experimental work, indicates that any discharge of Pb-bearing particles into the marine environment either directly as mine wastes or indirectly as from natural runoff from current and former lead mining sites results in immediate lead contamination of the in situ mussel population.  相似文献   

18.
This study was designed to establish the distributions of trace metals (Cd, Co, Cu, Ni, Pb, and Zn), dissolved organic carbon (DOC), and inorganic nutrients (PO4 and H4SiO4) in the water column of the small, relatively pristine Peconic River estuary. We were also able to examine the effects of a harmful microalgal bloom, known as the brown tide, which occurred in the area during our study. Because river inflow to the Peconic estuary is restricted by a small dam at the head of the estuary, direct evaluation of the relative importance of riverine inputs on estuarine metal distributions was possible. The simultaneous analyses of geochemical carrier metals (Al, Fe, and Mn), an indicator of sewage (Ag), and other ancillary parameters (e.g., suspended particulate matter, dissolved O2, chlorophylla) were used to describe the major processes controlling metal concentrations in the dissolved phase. The trace metal distributions indicated two distinct biogeochemical regimes within the estuary: an anthropogenically perturbed region with high metal levels (e.g., Ag, 165 pM; Cu, 51 nM; Zn, 57 nM) at the head (Flanders Bay), and a larger outer region with relatively low metal concentrations. The very similar distributions of some metals (e.g., Mn, Ni) in the Peconic estuary compared to those in estuaries having much higher river flow demonstrated the dominant role of internal processes (e.g., diagenetic remobilization) in controlling these metal patterns. An inverse relationship between dissolved Fe and DOC with cell counts of the brown tide microalgaeAureococcus anophagefferens in our field study suggested a close association with the bloom, although a similar relationship was observed between dissolved Al and brown tide cell counts, implying that removal of Fe could be due to particle scavenging rather than biological uptake.  相似文献   

19.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

20.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号