首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
前寒武纪沉积岩中自生独居石的发现及其意义   总被引:5,自引:1,他引:5  
由于受到葛家屯组中发现自生方铅矿的启发 ,首次于大连前寒武纪震旦系十三里台组泥岩中发现了自生独居石 ,这一发现为在中国北方前寒武纪沉积岩中寻找自生独居石提供了重要的线索。它为进一步探索 U、Th- Pb同位素测年拓展了新的研究领域和提供了可能性。本文列举了中国北方前寒武纪沉积岩中 Ce元素异常以及 REE较高的例证 ,认为上述地区都有可能发现自生独居石。同时介绍了最近又在北京十三陵中元古代的常州沟组和串岭沟组所发现自生独居石的新资料。研究表明 ,自生独居石的电子探针扫描形态 ,与岩浆岩、变质岩及砂矿中截然不同。在地质年代分布上 ,元古宙 REE相对丰度较高 ,特别是 L REE较高的泥质岩多数来自古陆壳上。资料对比结果显示 :在 L a+Ce+Nd、Yb+Y、Sm+Gd+Dy三角图中 ,北京十三陵元古宙泥质岩、大连震旦系十三里台组泥岩和辽南 -辽西中元古代泥质岩都属于近古陆的沉积类型。首次提出 ,中国北方元古宙沉积与南方震旦系磷块岩沉积环境存在明显的不同并反映在三角图中 ,前者离 L a+Ce+Nd端点近 ,而后者由于成因上属于洋流上升沉积物而远离该端点。按照大连震旦系十三里台组沉积环境特点 ,自生独居石应为生物成矿作用的产物 ,含矿物泥岩形成于总体氧化环境中的局部还原亚环境中。基于此 ,建立了  相似文献   

2.
Polished sections of ferromanganese crusts on underwater rises in the Sea of Japan were studied with a JXA8100 microprobe analyser. Mineral phases of REE have been detected. They have Ln2O3 chemical composition, where Ln is La–Ce–Pr–Nd, La–Ce–Nd, or, much more rarely, La–Ce and La–Ce–Pr. With regard to the same chemical composition of REE grains in the ore crusts and basalts from Medvedev Volcano, it has been concluded that these REE were supplied during postvolcanic gas–hydrothermal processes.  相似文献   

3.
Rare earth element (REE) and yttrium concentrations of coexisting monazite and xenotime were determined from a suite of seven metapelites from the Variscan fold belt in NE Bavaria, Germany. The metapelites include a continuous prograde, mainly low-P (3–5 kbar) metamorphic profile from greenschist (c. 400 °C) to lower granulite facies conditions (c. 700 °C). The LREE (La–Sm) are incorporated preferentially in monoclinic monazite (REO9 polyhedron), whereas the HREE plus Y are concentrated in tetragonal xenotime (REO8 polyhedron). The major element concentrations of both phases in all rocks are very similar and do not depend on metamorphic grade. Monazite consists mainly of La, Ce and Nd (La0.20–0.23, Ce0.41–0.45, Nd0.15–0.18)PO4, all other elements are below 6 mol%. Likewise, xenotime consists mainly of YPO4 with some Dy and Gd solid solutions (Y0.76–0.80, Dy0.05–0.07, Gd0.04–0.06). In contrast, the minor HREE concentrations in monazite increase strongly with increasing metamorphic grade: Y, Dy and Gd increase by a factor of 3–5 from greenschist to granulite facies rocks. Monazite crystals often show zonation with cores low in HREE and rims high in HREE that is interpreted as growth zonation attained during prograde metamorphism. Similarly, Sm and Nd in xenotimes increase by a factor of 3–4 with increasing metamorphic grade. Prograde zonation in single crystals of xenotime was not observed. The XHREE+Y in monazite and XLREE in xenotime of the seven rocks define two limbs along the strongly asymmetric miscibility gap from c. 400 °C to 700 °C. The empirical calibration of the monazite miscibility gap limb coexisting with xenotime is appropriate for geothermometry. Due to its contents of U and Th, monazite has often been used for U–Pb age determination. The combination of our empirical thermometer on prograde zoned monazite along with possible age determination of zoned single crystals may provide information about prograde branches of temperature–time paths.  相似文献   

4.
《Applied Geochemistry》1998,13(7):861-884
Concentrations of the rare earth elements (REE), Th and U have been determined in thermal waters emerging from a number of locations in and around the Idaho Batholith. Previous investigators have suggested that the source of heat for the geothermal systems studied is the radioactive decay of K, Th and U which are enriched in the rocks through which the fluids flow. Thus, knowledge of the behavior of REE, Th and U in these systems may contribute to a better understanding of the potential consequences of the interaction of hydrothermal fluids with deeply buried nuclear waste. Such studies may also lead to the possible use of REE as an exploration tool for geothermal resources. The thermal waters investigated may be characterized as near-neutral to slightly alkaline, dilute, NaHCO3-dominated waters with relatively low temperatures of last equilibration with their reservoir rocks (<200°C). REE, Th and U concentrations were measured using Fe(OH)3 coprecipitation, followed by ICP-MS, which yielded detection limits of 0.01–0.003 μg/l for each element, depending on the volume of fluid sample taken. The concentrations of REE, Th and U measured (from <0.1 up to a few μg/l) are 3–5 orders of magnitude less than chondritic, in agreement with concentrations of these elements measured in other similar continental geothermal systems. The REE exhibit light REE-enriched patterns when normalized to chondrite, but when normalized to NASC or local granites, they exhibit flat or slightly heavy REE-enriched trends. These findings indicate that the REE are either taken up in proportion to their relative concentrations in the source rocks, or that the heavy REE are preferentially mobilized. Concentrations of REE and Th are often higher in unfiltered, compared to filtered samples, indicating an important contribution of suspended particulates, whereas U is apparently truly dissolved. In some of the hot springs the REE concentrations exhibit marked temporal variations, which are greater than the variations observed in major element concentrations, alkalinity and temperature. There are also variations in the fluid concentrations of REE, Th and U related to general location within the study area which may be reflective of variations in the concentrations of these elements in the reservoir rocks at depth. Thermal waters in the southern and central parts of the field area all contain ∑REE concentrations exceeding 0.1 μg/l (up to as high as 3 μg/l), Th exceeding 0.2 μg/l and U generally <0.4 μg/l. In contrast, thermal waters from the northern area contain lower ∑REE (<0.6 μg/l) and Th (<0.1 μg/l), but higher U (>3.0 μg/l). Using experimentally measured and theoretically estimated thermodynamic data, the distribution of species for La, Ce and Nd have been calculated and also the solubility of pure, endmember (La, Ce, Nd) phosphate phases of the monazite structure in selected hot spring fluids. These calculations indicate that, at the emergence temperatures, CO2−3 and OH complexes of the REE are the predominant species in the thermal waters, whereas at the deep-aquifer temperatures, OH complexes predominate. In these thermal waters, monazite solubility is strongly prograde with respect to temperature, with solubility often decreasing several orders of magnitude upon cooling from the deep-aquifer to the emergence temperature. At the surface temperature, calculated monazite solubilities are, within the uncertainty of the thermodynamic data, comparable to the REE concentrations measured in the filtered samples, whereas at the deep-aquifer temperature, monazite solubilities are generally several orders of magnitude higher than the REE concentrations measured in the filtered or unfiltered samples. Therefore, a tentative model is suggested in which the thermal fluids become saturated with respect to a monazite-like phase (or perhaps an amorphous or hydrated phosphate) upon ascent and cooling, followed by subsequent precipitation of that phase. The temporal variations in REE content can then be explained as a result of sampling variable mixtures of particulate matter and fluid and/or variable degrees of attainment of equilibrium between fluid and solid phosphate.  相似文献   

5.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

6.
《Applied Geochemistry》2000,15(9):1369-1381
Thirty-eight samples of stream sediments draining high-grade metamorphic rocks in the Walawe Ganga (river) Basin, Sri Lanka, were analysed for their REE contents, together with samples of metamorphic suites from the source region. The metamorphic rocks are enriched in light REE (LREE) compared to heavy REE (HREE) and are characterised by high La/Lu ratios and negative Eu anomalies. The chondrite-normalised patterns for these granulite-grade rocks are similar to that of the average post-Archaean upper crust, but they are slightly enriched with La and Ce. The REE contents of the <63-μm fraction of the stream sediments are similar to the probable source rocks, but the other grain size fractions show more enriched patterns. The <63-μm stream sediments fraction contains lower total REE, more pronouncd negative Eu anomalies, higher EuN/SmN and lower La N/LuN ratios relative to other fractions. The lower La N/LuN ratio is related to the depletion of heavy minerals in the <63-μm fraction. The 63–125-μm and 125–177-μm grain size fractions of sediments are particularly enriched in LREE (average ΣLREE=2990 μg/g and 3410 μg/g, respectively). The total HREE contents are surprisingly uniform in all size fractions. However, the REE contents in the Walawe Ganga sediments are not comparable with those of the granulite-grade rocks from the source region of the sediments. The enrichment of REE is accounted for by the presence of REE containing accessory mineral phases such as zircon, monazite, apatite and garnet. These minerals are derived from an unknown source, presumably from scattered bodies of granitic pegmatites.  相似文献   

7.
Summary Monazite occurs as an accessory mineral in a variety of rock types in the granulite belt of the Eastern Ghats, India. Five types of monazite paragenesis are distinguished based on the mode of occurrence. They include: 1) tiny inclusions in cordierite and garnet occurring in khondalites and charnockites, 2) distinct grains in charnockite, 3) associated with other phosphates (apatite and xenotime) in magnetite-spinel-sillimanite-sapphirine granulites, 4) well-developed grains in charnockites affected by shearing and 5) clustered grains in metasomatised pyroxenites. Microprobe analyses of these monazites show that they have some distinct chemical characteristics, mainly in terms of ELREE (La + Ce + Pr + Nd + Sm)/Actinides (U + Th) and ELREE/Y ratios. The chemistry of monazites supports the interpretation that actinides substitute for LREE, and implies other concomitant substitutions such as Ca for REE and Si for P. Among the five types of monazites, type 2 monazite is concentrated in greater abundance in some of the heavy mineral placer deposits along the east coast of India.
Die Geochemie der Monazite aus dem östlichen Ghats Granulit-Terrain, Indien
Zusammenfassung Monazit tritt als akzessorisches Mineral in verschiedenen Gesteinstypen des Granulit-Gürtels der Ost-Ghats, Indien, auf. Aufgrund seines Vorkommens, können fünf verschiedene Monazit-Paragenesen unterschieden werden: 1) winzig kleine Einschlusse in Cordierit und Granat aus Khondaliten und Charnockiten, 2) Einzelkörner im Charnockit, 3) zusammen mit anderen Phosphaten (Apatit und Xenotim) in Magnetit-Spinel-Sillimanit-Saphir-Granuliten, 4) gut ausgebildete, jedoch zerscherte Körner im Charnockit und 5) verteilte Körner in metasomatisierten Pyroxeniten. Mikrosonden-Analysen zeigen, daB die Monazite durch ganz bestimmte LREE (La + Ce + Pr + Nd + Sm)/Aktividen (U + Th) und LREE/Y Verhältnisse charakterisiert sind. Der Chemismus der Monazite bestatigt den Ersatz der LREE durch die Aktiniden, und deutet gleichzeitige Substitution der REE durch Ca und des P durch Si an. Von den fünf verschiedenen Monazitarten, ist der Typ 2 in größerer Anzahl in einigen der Schweremineralseifen entlang der Ostküste Indiens konzetriert.
  相似文献   

8.
138Ce/142Ce and 143Nd/144Nd isotope ratios of lunar samples are determined to constrain the petrogenetic differentiation and evolution of the moon. High-precision Ce-Nd isotope data, well-defined Rb-Sr isochrons, and rare earth elements (REE) abundances of lunar samples show that unexpectedly low La/Ce ratios of evolved lunar highland samples are preserved from at least 3.9 Ga. Precise analysis of REE abundances indicates that the low La/Ce ratio results from a depletion of La relative to other REE. This depletion can be seen in pristine KREEP basalts and Mg-suite rocks from 3.85 to 4.46 Ga. As REE abundances of all these samples are controlled by the presence of a KREEP component, the depletion was probably inherited from a late crystallization sequence of the lunar magma ocean related to the production of the original KREEP component.  相似文献   

9.
The major element, trace element and Nd-Sr isotopic composition of Cenozoic basaltic volcanic rocks from the Maguan area, eastern Tibet, indicates that the volcanic rocks are enriched in alkalis, especially K (K2O up to 3.81%) and depleted in Ti (TiO2 = 1.27%-2.00%). These rocks may be classified as two groups, based on their Mg# numbers: one may represent primary magma (Mg# numbers from 68 to 69), and the other, the evolved magma(Mg# numbers from 49 to 57). Their REE contents are very high (∑REE = 155.06-239.04μg/g). Their REE distribution patterns are of the right-inclined type, characterized by LREE enrichment [(La/Yb)N =12.0-19.2], no Ce anomaly (Ce/Ce*=1.0), and weak negative Eu anomaly (Eu/Eu*=0.9). The rocks are highly enriched in Rb, Sr and Ba (59.5-93.8μg/g, 732-999 μg/g, and 450-632 g/g, respectively), high in U and Th (1.59-2.31μg/g and 4.73-8.16 μg/g, respectively), and high in Nb, Ta, Zr and Hf (70-118 μg/g,3.72-5.93 μg/g, 215-381 μg/g, and 5.47-9.03 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, Nb, Ta, Zr, Hf and P show positive anomalies, whereas Ba, Ti and Y show negative anomalies. The 87Sr/86Sr ratios range from 0. 704029 to 0.704761; 143Nd/144Nd from 0. 512769 to 0. 512949; and εNd from 2.6 to 6.1. These geochemical features might suggest that the potential source of the basaltic high-K volcanic rocks in the Maguan area is similar to the OIB-source mantle of Hawaii and Kergeulen volcanic rocks.  相似文献   

10.
Rare earth elements (REE) from La to Ho were mobile and enriched in hydrothermally altered rocks below the Archean Phelps Dodge Cu-Zn volcanogenic massive sulphide deposit in northwestern Quebec. Largest net enrichment was in the moderately altered quartz-chlorite zone where La concentration increased six-fold and LaNYbN steepened from 1.9 to 13.0; the intensely altered chloritite zone had both minor net REE enrichment and depletion. Yb and Lu were immobile throughout both zones. The mobile REE were added and subtracted in constant chondrite-normalized inter-REE proportions: 1.0 La, 0.79 Ce, 0.57 Nd, 0.49 Sm, 0.01 Eu, 0.10 Tb and 0.02 Hb. Small additions of Eu relative to generally larger additions of LREE and Tb produced enhanced negative Eu-anomalies. The REE were mobilized at the hot (>300 C) core of the alteration system and deposited at the cooler periphery. Other sites of intense alteration and water/rock interaction display similar REE changes, indicating that selective REE enrichment at constant inter-REE ratios is a widespread phenomenon.  相似文献   

11.
Upper Triassic-Jurassic black shale at Marvast, Iran, contains grey to green-grey ellipsoidal nodules of monazite ranging from 0.1 to 2?mm across. The presence of host-rock mineral inclusions within the monazite grains, low Th content in the monazite, lack of relict yellow cores (characteristic of igneous monazite), and the absence of monazite in the other sedimentary sequences in the Marvast area rule out a detrital origin for the monazite nodules and suggest authigenic crystallization during sediment compaction. Enrichment of the cores of the monazite grains in mid-range to heavy rare-earth elements (REE) and their rims in La + Ce point to variations in the degree of REE mobility and/or evolving composition of the diagenetic mineralizing fluid during nodule growth. The phosphorus and REE required for monazite crystallization were probably derived from seawater and adsorbed on clays and Fe-Mn hydroxides. The interstitial fluids expelled from the sediments during burial compaction and diagenesis became enriched in P and REE through complexing. The association of the Marvast monazite nodules with the black shale may indicate that organic complexes aided in the mobilization and transport of the REE into the pore fluids. Detailed field investigations in the study area and vicinity show that authigenic monazite in the upper Triassic-Jurassic shale sections is spatially associated with quartz lenses. It is likely that these lenses are surface expressions of shallow intrusive magmas, which provided the heat that promoted the mobilization and redistribution of the REE and P, and initiated precipitation of monazite in the overlying sediments.  相似文献   

12.
Textural relationships occurring in a range of settings from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China, indicate reaction between monazite [(REE)PO4], bastnäsite [(REE)(CO3)F] and apatite. Within dolomite marble-hosted ores monazite grains occur surrounded by zones of intergrown bastnäsite and apatite. In fluoritised dolomite marble-hosted amphibole-calcite veins, co-existing apatite and bastnäsite are separated by zones of monazite plus calcite, whilst in aegirine-apatite veins hosted by banded aegirine-fluorite-magnetite-bastnäsite rocks, they are separated by zones of monazite and fluorite. Modal proportions for minerals in the reaction zones have been used to derive reaction stoichiometries, and suggest the following reactions: Consideration of these reactions, along with published experimental data and other reported mineral assemblages, suggests that the factors controlling the relative stabilities of monazite and bastnäsite are the pH, and the activities of HF?°, CO3 2?, Ca2+ and PO4 3?. Textures indicating reaction between REE phosphates and fluorocarbonates have been reported from a number of other settings and are consistent with the controls on reaction inferred from this study. The range of assemblages seen at Bayan Obo is a result of the variation between relatively unbuffered fluid compositions, and those buffered by the fluoritisation of the carbonate host rock. Mass-balance calculations suggest some mobilisation of the REE into the fluid phase during reaction, although this did not significantly alter the REE distribution in monazite and bastnäsite. The mineral compositions also reveal variation in the REE distribution with different paragenetic settings indicating variation in the composition of the metasomatic fluids. These changes may be related to changes in the fluid source region, or to variations in the fluid chemistry, particularly X CO2, leading to different REE solubilities at different periods in the development of the deposit.  相似文献   

13.
Zonal and sectorial monazite-(Ce) crystals from ceramic granite pegmatites of the Adui pluton are enriched in Ce and La, whereas monazite from the miarolitic gemstone pegmatites at the western contact of the pluton are enriched in Nd, Sm, Gd, and Y. This difference is caused by earlier crystallization of ceramic pegmatites and higher temperatures of their formation (650–600°C for ceramic pegmatites and 550–300°C for miarolitic pegmatites). Monazites from ceramic and miarolitic pegmatites of the Adui pluton differ in La and Nd contents, but their compositional trend in La-Nd coordinates is similar to the variation in monazite composition from the early to late granite pegmatites in the Ilmeny Mountains. It is suggested that decrease in temperature is a factor controlling REE contents in monazite. Heterovalent P ↔ Si and REE ↔ Th, Ca isomorphism in the consecutive zones of growth pyramids in monazite is both unidirectional and wave-like. Monazite from granite pegmatites of the Adui pluton and Ilmeny Mountains crystallized mainly under slightly alkaline conditions.  相似文献   

14.
在野外地质调查的基础上,结合室内显微镜观察及电子探针分析测试,对新疆拜城波孜果尔碱性岩中的副矿物的矿物学特征和化学成分进行了研究.发现这些副矿物常以共生组合的形式产在碱性岩中,主要分布在石英二长闪长岩和石英二长岩中.烧绿石中U、Th和REE替代Ca、Na.独居石富含LREE,Th和LREE相互替代;根据独居石中w(La+ Ce) >40%和La/Nd比值在1.6~4.5,推断独居石为热液成因.磷钇矿中富含REE,且以HREE为主;w(Th)>w(U).锆石中Zr/Hf比值在60%以上,符合碱性岩特征;其Th/U比值为0.6,属于岩浆锆石.星叶石中w(Rb2O)、w(Cs2O)较高.萤石中Y、Ce替代Ca.锆石中的钍石w(U)明显高于磁铁矿中钍石w(U).在石英二长岩中,烧绿石的w(CaO)、w(TiO2)、w(ZrO2)、w(U3O8),磷钇矿的w(Y2O3),星叶石的w(TiO2),萤石的w(Ca),氟碳铈镧矿的w(CaO)较丰富;而在石英二长闪长岩中,烧绿石的w(Ce2O3),磷钇矿的REE含量,星叶石的w(Nb2O5)、w(Rb2O),萤石w(Ce)、w(Y)和氟碳铈镧矿的w(La2O3)较高.  相似文献   

15.
At the Zhelannoe quartz deposit, the content of monazite attains 0.5 wt % in unaltered sericitolite and 18 wt % in hydrothermally altered sericitolite. Two monazite generations, including four varieties, characterize the sequence of formation and alteration of sericitolite bodies at the Zhelannoe deposit. Monazite of the first generation occurs in unaltered sericitolite as prismatic and tabular crystals characterized by (Nd,Ce) > La and enrichment in HREEs and ThO2 (5–16 wt %). Its formation is accompanied crystallization of milk white quartz. Monazite of the second generation occurs in altered sericitolite as the product of recrystallization of the first-generation monazite. The large drusy crystals of second-generation monazite were formed similarly with Alpine-type veins. Monazite of the second generation is characterized by Ce > (La,Nd), low contents of HREEs and ThO2 (0.5–7 wt %) and high contents of CaO and SO3 (up to 3–5 wt %). Monazite of the second generation appeared as a result of local superimposed processes and is a characteristic feature of the Zhelannoe deposit.  相似文献   

16.
大连震旦系十三里台组首次发现自生稀土元素矿物独居石后 ,在北京十三陵中元古代长城系常州沟组、串岭沟组和大红峪组又发现了自生的独居石以及其他磷酸盐和硅酸盐稀土矿物。自生稀土矿物的形成和岩石中稀土元素含量较高有关 ;电子探针背散射图像和 P、Th、L a、Ce、Nd、Y等元素面分布图像研究表明 ,沉积岩中的自生稀土矿物与岩浆岩、变质岩和碎屑成因的截然不同。本文首次报道了元古宙长城系常州沟组沉积岩中碎屑锆石边部成岩过程中形成的自生磷钇矿。中国北方元古宙泥砂质碎屑沉积岩普遍具有高稀土组合 ,许多地区都可能存在独居石等自生稀土矿物 ,如天津蓟县、辽西、辽南和宣化等地 ,为利用离子探针 (SHRIMP)确定其同位素地质年代提供了可能。此外 ,本文对比了大连震旦系自生独居石和内蒙白云鄂博矿区东矿的独居石晶形和化学成分的相似性 ,再一次提出中国北方元古宙富稀土地层可能是内蒙古白云鄂博巨型稀土元素矿床的矿源层问题。  相似文献   

17.
The criteria for the evaluation of the REE composition of phosphorites and sedimentary rocks have been determined. These data are required to reconstruct depositional environments. Literature data on the geochemistry of some phosphorite deposits of Eurasia are considered. The REE patterns of Mesozoic phosphorites of the East European Platform are studied. On the basis of REE contents, the ratios of lanthanides and fields on the La–(Nd + Sm)–(Y + Dy), La–(Ce + Nd + Sm)–(Y + Dy), and LREE–MREE–(HREE×10) diagrams have been determined as indicators of climate and the depth and facies conditions of sedimentation.  相似文献   

18.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

19.
Shallow groundwater and hot springs were collected from northeastern Guangdong Province, Southeast China, to determine the concentrations and fractionation patterns of rare-earth elements(REE). The results show that the La, Ce and Nd of REEs are abundant in groundwater and rock samples, and the ∑REE contents in groundwater and rock samples range from 126.5 to 2875.3 ng/L, and 79.44 to 385.85 mg/L, respectively. The shallow groundwater has slightly HREE-enriched PAAS-normalized patterns. However, the granitic rocks PAAS-normalized patterns, with remarkable negative Eu anomalies, are different from that of shallow groundwater. The enrichment of HREE is considered to be controlled by REE complexation and readsorption for most groundwater has Ce and Eu positive anomalies. The Ce and Eu anomalies in groundwater are controlled by redox conditions. Moreover, the Fe-contain sediments dissolution and/or the reduction of Fe oxyhydroxides are another factor contributing to Ce anomalies. The Eu anomalies in groundwater are controlled by the preferential mobilization of Eu2+ during water-rock interaction compared to Eu3+.  相似文献   

20.
The N–S trending, 2–4 km wide Ramagiri schist belt is made up of three blocks dominated by metavolcanic rocks, separated and surrounded by granitic rocks of distinct characteristics. The metavolcanic rocks are tholeiitic in composition and are very similar in their major element composition as well as in their abundances of some trace elements. However, the rare earth elements (REE) require distinct sources. The rocks of the amphibolite facies eastern block have LREE depleted REE patterns ([Ce/Yb] = 0.7–0.9), requiring derivation from depleted mantle-like sources. The greenschist facies metatholeiitic rocks of the central block have LREE enriched REE patterns ([Ce/Yb] = 3–6), reflecting the nature of their source(s). The Nd isotopic data require that the LREE enriched nature could not have been attained significantly prior to its melting. The fine-grained, upper greenschist facies metatholeiites of the western block have flat to slightly LREE depleted patterns ([Ce/Yb] = 0.8–0.95). Minor fractional crystallization of rock forming minerals may relate a few samples to each other among samples from each of the three blocks. Different extents of partial melting of distinct mantle sources have played a dominant role in the generation of the parent magmas to the central versus eastern and western block metatholeiites. The geochemical data suggest that the mantle sources were non-lherzolitic, and that these sources may have seen previous episodes of melt addition and extraction prior to melting that gave rise to the parent melts to the rocks ∼2750 Ma ago. The REE data indicate that while the sources of the eastern and western block rocks were similar to depleted mantle (ɛNd( i ) about +2), the source of the central block rocks (ɛNd( i ) about +3.5) were enriched in large ion lithophile element (LILE)-rich fluids/melts probably derived from subducting oceanic crust. This and other trace element signatures point to magma extraction in tectonic settings similar to modern island arcs. Subsequent to magma emplacement and crystallization, all the three suites of rocks were affected by interaction with low-temperature, crustal derived fluids (ɛNd 2750Ma of about −8 to −12), probably during the accretion of the three blocks of the belt in the present form. The inferred source characteristics, tectonic setting of magma generation and the crustal fluid processes seem to suggest that Phanerozoic-style tectonic processes may have been important in the generation of Archean crust in the Dharwar craton. Received: 31 July 1995 / Accepted: 12 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号