首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on the surface drifters that moved out from the Sea of Okhotsk to the Pacific, the surface velocity fields of mean, eddy, and tidal components in the Oyashio region are examined for the period September 1999 to August 2000. Along the southern Kuril Island Chain, the Oyashio Current, having a width of ∼100 km, exists with velocities of 0.2–0.4 m s−1. From 40°N to 43°N, the Subarctic Current flows east- or northeastward with velocities of 0.1–0.3 m s−1, accompanied by a meandering Oyashio or Subarctic front. Between the Oyashio and Subarctic current regions, an eddy-dominant region exists with both cyclonic and anticyclonic eddies. The existence of an eastward flow just south of Bussol' Strait is suggested. The 2000 anticyclonic warmcore ring located south of Hokkaido was found to have a nearly symmetric velocity structure with a maximum velocity of ∼0.7 m s−1 at 70 km from the eddy center. Diurnal tidal currents with a clockwise tidal ellipse are amplified over the shelf and slope off Urup and Iturup Islands, suggesting the presence of diurnal shelf waves. From Lagrangian statistics, the single-particle diffusivity is estimated to be ∼10 × 107 cm2s−1.  相似文献   

2.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

3.
An observation line along the TOPEX/POSEIDON (T/P) ground track 060 was set to estimate the Oyashio transport. We call this line the OICE (Oyashio Intensive observation line off-Cape Erimo) along which we have been conducting repeated hydrographic observations and maintaining mooring systems. T/P derived sea surface height anomaly (SSHA) was compared with velocity and transport on OICE. Although the decorrelation scale of SSHA was estimated at about 80–110 km in the Oyashio region, the SSHA also contains horizontal, small-scale noise, which was eliminated using a Gaussian filter. In the comparison between the SSHA difference across two selected points and the subsurface velocity measured by a moored Acoustic Doppler Current Profiler (ADCP), the highest correlation (0.92) appeared when the smoothing scale was set at 30 km with the two points as near as possible. For the transport in the Oyashio region, the geostrophic transport between 39°30′ N and 42°N was compared with the SSHA difference across the same two points. In this case the highest correlations (0.79, 0.88 and 0.93) occurred when the smoothing scale was set at 38, 6 and 9 km for reference levels of 1000, 2000 and 3000 db, respectively. The annual mean transport was estimated as 9.46 Sv in the 3000 db reference case. The Oyashio transport time series was derived from the T/P SSHA data, and the transports are smaller than that estimated from the Sverdrup balance in 1994–1996 and larger than that in 1997–2000. This difference is consistent with baroclinic response to wind stress field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Using hydrographic data and moored current meter records and the ADCP observed current data during May–June 1996, a modified inverse method is applied to calculate the Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands. There are three branches of the Kuroshio east of Taiwan. The Kuroshio in the East China Sea comes from the main (first) and second branches of the Kuroshio east of Taiwan. The easternmost (third) branch of the Kuroshio flows northeastward to the region east of Ryukyu Islands. The net northward volume transports of the Kuroshio through Section K2 southeast of Taiwan and Section PN in the East China Sea are 44.4×106 and 27.2×106 m3s−1, respectively. The western boundary current east of Ryukyu Islands comes from the easternmost branch of the Kuroshio east of Taiwan and an anticyclonic recirculating gyre more east, making volume transports of 10 to 15×106 m3s−1. At about 21°N, 127°E southeast of Taiwan, there is a cold eddy which causes branching of the Kuroshio there.  相似文献   

7.
Intermediate intrusion of low salinity water (LSW) into Sagami Bay was investigated on the basis of CTD data taken in Sagami Bay and off the Boso Peninsula in 1993–1994. In October 1993, water of low temperature (<7.0°C), low salinity (<34.20 psu) and high dissolved oxygen concentration (>3.5 ml I−1) intruded along the isopycnal surface of {ie29-1} at depths of 320–500 m from the Oshima East Channel to the center of the bay. On the other hand, the LSW was absent in Sagami Bay in the period of September–November 1994, though it was always found to the south off the Boso Peninsula. Salinity and dissolved oxygen distributions on relevant isopycnal surfaces and water characteristics of LSW cores revealed that the LSW intruded from the south off the Boso Peninsula to Sagami Bay through the Oshima East Channel. The LSW cores were distributed on the continental slope along 500–1000 m isobaths and its onshore-offshore scales were two to three times the internal deformation radius. Initial phosphate concentrations in the LSW revealed its origin in the northern seas. These facts suggest that the observed LSW is the submerged Oyashio Water and it flows southwestward along the continental slope as a density current in the rotating fluid. The variation of the LSW near the center of Sagami Bay is closely related to the Kuroshio flow path. The duration of LSW in Sagami Bay is 0.5 to 1.5 months.  相似文献   

8.
Oyashio water flowing into the Mixed Water Region (MWR) and the Kuroshio Extension region that forms North Pacific Intermediate Water (NPIW) has been examined, based on four Conductivity-Temperature-Depth profiler (CTD)/Lowered Acoustic Doppler Current Profiler (L-ADCP) surveys of water masses and ocean currents. There are two processes by which the Oyashio water intrudes across the Subarctic Front (SAF): one is a direct cross-nearshore-SAF transport near Hokkaido along the western boundary, and the other is a cross-offshore-SAF process. Seasonal variations were observed in the former process, and the transport of the Oyashio water across SAF near Hokkaido in the density range of 26.6–27.4σθ was 5–10 Sv in spring 1998 and 2001, and 0–4 Sv in autumn 2000, mainly corresponding to the change of the southwestward Oyashio transport. Through the latter process, 5–6 Sv of the Oyashio water was entrained across the offshore SAF from south of Hokkaido to 150° in both spring 2001 and autumn 2000. The total cross-SAF Oyashio water transport contributing to NPIW formation is more than 10 Sv, which is larger than previously reported values. Most of the Oyashio water formed through the former process was transported southeastward through the Kuroshio Extension. It is suggested that the Oyashio intrusion via the latter process feeds NPIW in the northern part of the MWR, mainly along the Subarctic Boundary and SAF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The role of the small-size (SF; 0.1–0.5 mm) and large-size (LF; 0.5–20.0 mm) fractions in the biomass and abundance of mesozooplankton (0.1–20.0 mm) was assessed using the database of samples obtained during the cruises of RV Akvanavt in the northeastern Black Sea in November 2000 and October 2006. The mesozooplankton was collected by means of Juday nets (37/50, filtering gauze 160 μm) and Niskin bottles in two areas: (1) the shelf and continental slope (30–1480 m depth) and (2) the deep sea (depths of more than 1500 m). The plankton net was considerably less effective in collecting the SF of the mesozooplankton (by a factor of 30–36) than the Niskin bottles. When comparing the SF and LF, we estimated the abundance and biomass of the SF in the samples obtained with the Niskin bottles. The abundance of the SF in the deep-sea area was 2.5 times lower compared to the shelf and continental slope, and the LF abundance was 5.0 times lower in the same way. The abundance of the SF constituted 88% of the total mesozooplankton on the shelf and continental slope, and 78% in the deep-sea area. The biomass of the SF was higher as well on the shelf and continental slope. Meroplankton played a significant role in the SF zooplankton abundance (0.5 × 103 + 0.16 ind. m−3) in this area. The SF grazing impact was 10% of the total mesozooplankton grazing on the shelf and continental slope, and 17% in the deepsea area. Appendicularia and nauplii of copepods had the greatest contribution to the mesozooplankton grazing among the SF group.  相似文献   

10.
Six newly developed floats, which were set to drift on the 26.7 σθ isopycnal surface and to profile temperature, salinity and pressure above 1000 dbar once a week, were deployed in the Oyashio and Kuroshio Extension (KE) in order to examine the circulation, formation site and time scale of newly formed North Pacific Intermediate Water (NPIW). The floats were deployed in February or May 2001, and the data from their deployments to December 2002 are analyzed here. Four of the six floats were deployed near the KE axis at around the first meander crest, and they moved eastward to 157°E–176°W at latitudes of 30°N–45°N. The other two floats deployed in the Oyashio water with low-potential vorticity near the south coast of Hokkaido moved southward to reach the KE front and then moved eastward to the same region as the first four floats. The temperature and salinity at 26.7 σθ measured by the profiling floats indicate that the source waters of NPIW, Oyashio and Kuroshio waters are drastically mixed and modified in the mixed water region west of 160°E. The floats were separated into the three paths east of 160°E between the Kuroshio Extension front and the north of Water-Mass front (nearly subarctic front). New NPIW is judged to be formed along these three paths since the vertical profiles of temperature and salinity are quite smooth, having a salinity minimum at about 26.7σθ along each path. Kuroshio-Oyashio isopycnal mixing ratios of the new NPIW are 7:3, 6:4 and 5:5 at 26.7σθ along the southern, middle and northern paths, respectively. Potential vorticity converges to about 14–15 × 10−11 m−1s−1 along these paths. The time scale of new NPIW formation is estimated to be 1–1.5 years from the merger of Oyashio and Kuroshio waters to the formation of the new NPIW. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

12.
2012年南海西北陆架冬季水文特征的观测分析   总被引:1,自引:0,他引:1  
本文基于2012年12月南海西北部陆架海区的温盐和流速实测资料,分析了粤西和琼东陆架海区冬季三维温、盐结构和流场特征,给出沿陆架和跨陆架方向的水体和热盐通量。结果表明:(1)在50m以浅,粤西和琼东海区温度均由近岸向外海递增,深层则相反;冬季近岸海区混合层较深,外海密度跃层位于60—120m深度且层结较强,浮力频率大于10–2/s;(2)海流大致沿等深线向西南流动,30m以深流速大小在0.03—0.40m/s之间,且随着深度增加而略有减小;琼东海区100m等深线附近在60m以浅水层观测到水体辐聚并有明显温度锋面存在;(3)沿陆架方向的水体和热盐输送均大于跨陆架方向,其中粤西单位面积沿/跨陆架水体通量平均值为0.13×10–6/0.03×10–6Sv/m2,低于琼东海区的0.91×10–6/0.56×10–6Sv/m2。  相似文献   

13.
Between late January and March of 1966, the western Subarctic region was widely investigated by MVArgo and MVG. B. Kelez. That is the first oceanographic measurement in this region during winter season. Oceanographic conditions and relative transports are discussed using these data. The Alaskan Stream which is closely related with the formation of the salmon fishing ground, is continuous as far west as long. 170°E and the westward transport of 8×106m3/sec occurs across long. 165°W. That are similar to the conditions in summer. The isolated warm water mass separated from the Alaskan Stream is more clearly defined as a clockwise gyre at the west of Komandorski Ridge. Transport of approximately 9×106m3/sec in the East Kamchatka Current reaches east of the Kurile Islands, where its water, mixing with the Okhotsk Sea water, forms the Oyashio Current having the volume transport of 7×106m3/sec. Generally, the circulation pattern in winter is similar to that in summer. Schematic diagram of relative transport and circulation in the Subarctic region in the North Pacific Ocean in winter is proposed.  相似文献   

14.
Hydrographic, current meter and ADCP data collected during two recent cruises in the South Indian Ocean (RRS Discovery cruise 200 in February 1993 and RRS Discovery cruise 207 in February 1994) are used to investigate the current structure within the Princess Elizabeth Trough (PET), near the Antarctic continent at 85°E, 63–66°S. This gap in topography between the Kerguelen Plateau and the Antarctic continent, with sill depth 3750 m, provides a route for the exchange of Antarctic Bottom Water between the Australian–Antarctic Basin and the Weddell–Enderby Basin. Shears derived from ADCP and hydrographic data are used to deduce the barotropic component of the velocity field, and thus the volume transports of the water masses. Both the Southern Antarctic Circumpolar Current Front (SACCF) and the Southern Boundary of the Antarctic Circumpolar Current (SB) pass through the northern PET (latitudes 63 to 64.5°S) associated with eastward transports. These are deep-reaching fronts with associated bottom velocities of several cm s-1. Antarctic Bottom water (AABW) from the Weddell–Enderby Basin is transported eastwards in the jets associated with these fronts. The transport of water with potential temperatures less than 0°C is 3 (±1) Sv. The SB is shown to meander in the PET, caused by the cyclonic gyre immediately west of the PET in Prydz Bay. The AABW therefore also meanders before continuing eastwards. In the southern PET (latitudes 64.5 to 66°S) a bottom intensified flow of AABW is observed flowing west. This AABW has most likely formed not far from the PET, along the Antarctic continental shelf and slope to the east. Current meters show that speeds in this flow have an annual scalar mean of 10 cm s-1. The transport of water with potential temperatures less than 0°C is 20 (±3) Sv. The southern PET features westward flow throughout the water column, since the shallower depths are dominated by the flow associated with the Antarctic Slope Front. Including the westward flow of bottom water, the total westward transport of the whole water column in the southern PET is 45 (±6) Sv.  相似文献   

15.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   

16.
Horizontal and meridional volume transports on timescales from intra-seasonal to interannual in the North Pacific subarctic region were investigated using a reanalysis dataset for 1993–2001 that was constructed from an assimilation of the TOPEX altimeter and in situ data into an eddy-permitting North Pacific ocean general circulation model. The barotropic flow is excited along east of the Emperor Seamounts by the western intensification dynamics. The volume transport of this flow compensates for that across the interior region east of the Seamounts below the summit depth of the Seamounts. The Oyashio, which is also considered as a compensation flow for the transport in the whole interior region, includes baroclinic as well as barotropic components. Baroclinic transports in the whole interior region exceed those in the western boundary region in the upper (200–1000 m) and lower (2000–5000 m) layers, and the total transport is northward (southward) in the upper (lower) layer. These excesses of the baroclinic transport are balanced by a vertical transport of the meridional overturn. The meridional overturn has a complementary relation to the basin-scale baroclinic circulation in the North Pacific subactic region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In this study we test Talley's hypothesis that Oyashio winter mixed-layer water (26.5–26.6σ θ) increases its density to produce the North Pacific Intermediate Water (NPIW) salinity minimum (26.7– 26.8σθ) in the Mixed Water Region, assuming a combination of cabbeling and double diffusion. The possible density change of Oyashio winter mixed-layer water is discussed using an instantaneous ratio of the change of temperature and salinity along any particular intrusion (R l ). We estimate the range of R l DD required to convert Oyashio winter mixed-layer water to the NPIW salinity minimum due to double diffusion, and then assume double-diffusive intrusions as this conversion mechanism. A double-diffusive intrusion model is used to estimate R l DD in a situation where salt fingering dominates vertical mixing, as well as to determine whether Oyashio winter mixed-layer water can become the NPIW salinity minimum. Possible density changes are estimated from the model R l DD by assuming the amount of density change due to cabbeling. From these results, we conclude that Oyashio winter mixed-layer water contributes to a freshening of the lighter layer of the NPIW salinity minimum (around 26.70σθ) in the MWR.  相似文献   

18.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

19.
The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of about 20 cm s−1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s−1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at ±2 cm s−1. The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ∼60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9±19.9 Sv in austral summer and 93.6±20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scale forcing through wind stress curl.  相似文献   

20.
We present observations of strong, episodic, bottom-intensified currents from two current meter moorings, each of a year's duration, placed in the central Greenland Sea at 75°N, 8°W, in a water depth of circa 3340 m. The events, recorded by the current meters placed some 50 m above the sea floor, occur about 4 times a year and last about a week. They show currents of up to 43 cm/s, turning in direction, occasionally modulated by a signal of the frequency of the Coriolis parameter or the semi-diurnal tide. The temperature record at the current meter however remains constant to 0.01°C. The current direction measured at overlying meters correlates well with that of the deepest meter – the current speed does not. Independent, geological data also show evidence of strong bottom flows in the area.We discuss possible mechanisms for these `benthic storms', including the hypothesis of a sediment driven plume descending from the East Greenland continental slope. These high energy events have implications for sedimentation, shelf-basin exchange and boundary mixing processes. Normal mode theory is used to justify the dynamical response of the system to such a bottom-trapped impulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号