首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geochemistry of sediments is primarily controlled by their provenances, and different tectonic settings have distinctive provenance characteristics and sedimentary processes. So, it is possible to discriminate provenances, depositional environments and tectonic settings in the development of a sedimentary basin with the geochemistry of the clastic rocks. The analytical results of the present paper demonstrate that sediments in the Songliao prototype basin are enriched in silica (SiO2=66.48-80.51 %), and their ΣREE are 30-130 dmes of that of chondrite with remarkable Eu anomalies. In discriminating diagrams of Eu/Eu vs eeeeeREE and (La/Yb)N vs ΣREE, most samples locate above the line Eu/ Eu=l, on the right of the line Eu/Eu/ΣREE=1 and under the line La/Yb)N/eeeeeREE=1/8, which indicates that the depositional environment of sediments in the basin was oxidizing. In addition, variations of MgO, TiO2, A12O3, FeO+Fe2O3, Na2O and CaO vs SiO2 reflect a tendency of increasing mineral maturity of sediments  相似文献   

2.
《Sedimentary Geology》2006,183(3-4):181-202
Kita-daito-jima is a carbonate island located at the northwestern region of the Philippine Sea (25°55.6′–57.6′N, 131°16.9′–19.8′E). Dolomites extend from the island surface to a depth of 100 m below the ground surface (mbgs). Strontium isotope stratigraphy indicates that subsurface Units C1 (0–49.7 mbgs) and C2 (49.7–103.4 mbgs) were dolomitized at 5.5 Ma and 2.0 Ma, respectively, and that island-surface dolomites are products of dolomitization at 1.6–2.0 Ma. X-ray diffraction analysis indicates that the island-surface and borehole dolomites comprise variable mixtures of four and three dolomite crystal phases, respectively. Each of these phases is distinguished by a different Ca and Mg content. Three textural types can be recognized in the Kita-daito-jima dolomites, fabric-preserving crystalline nonmimetic (CNM), crystalline mimetic (CM), and fabric-preserving microsucrosic (MS). CNM dolomites contain more calcian phases, whereas MS dolomites commonly are richer in more stoichiometric phases. Backscattered electron images indicate that calcian dolomite phases were precipitated earlier than the more stoichiometric dolomite phases and that there is no significant hiatus between the phases, although they are diachronous. Both the island surface and borehole cores dolomites show linear relationships between whole-rock δ18O composition and Mg contents and between whole-rock trace element concentrations (Sr and Na) and Mg contents. These covariances result from phase mixing, not stoichiometric effects. Deconvolution of whole-rock isotopic and elemental compositions based on the relative abundance of phases reveals that each phase has a distinct chemical and isotopic composition. Oxygen isotopic compositions of the island surface and borehole dolomites suggest that all dolomite phases formed in seawater and that dolomitization primarily occurred during glacio-eustatic sea-level lowstands and cooler ocean temperatures.  相似文献   

3.
The upper Palaeocene–lower Eocene Umm er Radhuma Formation in the subsurface of Qatar is dominated by subtidal carbonate depositional packages overlain by bedded evaporites. In Saudi Arabia and Kuwait, peritidal carbonate depositional sequences with intercalated evaporites and carbonates in Umm er Radhuma have been previously interpreted to have been dolomitized via downward reflux of hypersaline brines. Here, textural, mineralogical and geochemical data from three research cores in Qatar are presented which, in contrast, are more consistent with dolomitization by near-normal marine fluids. Petrographic relationships support a paragenetic sequence whereby dolomitization occurred prior to the formation of all other diagenetic mineral phases, including chert, pyrite, palygorskite, gypsum, calcite and chalcedony, which suggests that dolomitization occurred very early. The dolomites occur as finely crystalline mimetic dolomites, relatively coarse planar-e dolomites, and coarser nonplanar dolomites, all of which are near-stoichiometric (50.3 mol% MgCO3) and well-ordered (0.73). The dolomite stable isotope values (range −2.5‰ to +1‰; mean δ18O = −0.52‰) and trace element concentrations (Sr = 40 to 150 ppm and Na = 100 to 600 ppm) are compatible with dolomitization by near-normal seawater or mesohaline fluids. Comparisons between δ18O values from Umm er Radhuma dolomite and the overlying Rus Formation gypsum further suggest that dolomitization did not occur in fluids related to Rus evaporites. This study provides an example of early dolomitization of evaporite-related carbonates by near-normal seawater rather than by refluxing hypersaline brines from overlying bedded evaporites. Further, it adds to recent work suggesting that dolomitization by near-normal marine fluids in evaporite-associated settings may be more widespread than previously recognized.  相似文献   

4.
The northern tract of the Chichibu Belt on Shikoku Island, Southwest Japan, in places contains dolomites of Late Carboniferous age displaced into radiolarian cherts. The sections here examined are along the Niyodo gorge, central Shikoku. The sequence begins with thinly interbedded dolomitized radiolarian cherts and dolomites with a small amount of dolomitized radiolarian claystone and calcisiltite beds. These rocks, 5–10 m thick, are succeeded by a thick section of bedded and massive dolomites, commonly 40–50 m thick, which have thin intercalations of radiolarian claystone in the upper part. This dolomite sequence is depositionally overlain by a sequence, up to 50 m thick, comprising thinly interbedded radiolarian cherts and claystones, which, in turn, contain lenticular bodies of dolomite.Thin-section examination reveals that most of dolomites of the area have an arenitic or lithic texture, and should be termed doloarenite and dololithite. This means that dolomites are detrital. All lines of evidence suggest that the dolomites were not formed in the same depositional site in which the radiolarian cherts were being accumulated, but formed instead as allochthonous bodies which were displaced into a deep oceanic basin of chert deposition.The following sequence of events is postulated: (1) deposition of shallow-water calcareous sediments in a subtidal area; (2) dolomitization in a very shallow-water to supratidal environment; (3) displacement of dolomitized sediments, possibly mainly as debris flows into a deep-water, truely pelagic realm, in which siliceous radiolarian sediments were accumulating; (4) continued accumulation of siliceous sediments after the major influx of dolomitized sediments; and (5) minor influxes of dolomitized sediments during the continuous accumulation of siliceous sediments.  相似文献   

5.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

6.
端元建模分析能够从复杂的多峰分布特征的沉积物中提取出具有不同沉积动力过程的端元,但是,由于沉积物的粒度分布还受到沉积环境等多种因素的影响,该方法的有效性及获得的端元组分的地质意义有待其他环境代用指标的进一步检验。以位于“吉兰泰—河套”盆地西部磴口次级隆起区的DK-12钻孔晚第四纪沉积物为例,采用BEMMA算法对该钻孔沉积物的粒度资料进行了端元建模分析,并以黏土矿物组合和前人的孢粉组合数据作为检验指标,结合该地区的区域地质背景,对获得的4个端元进行了综合检验分析,认为获得的沉积物粒度端元具有明确的地质意义,其中EM 1为远源粉尘、EM 2为近源的风成沙、EM 3和EM 4为河流冲积沙。  相似文献   

7.
In this study, the molecular composition and biomarker distribution of lacustrine sediments from Val-1 drillhole in the central zone of the western part of the Valjevo-Mionica basin were investigated at depth interval of 0–400 m. Former investigations have shown that the core material can be separated into six depth intervals based on bulk geochemical, mineralogical and sedimentological characteristics. Concerning the quality of organic matter, presence of specific minerals, and high salinity and anoxicity, or alkalinity, three zones are of highest interest, defined at depth intervals of 15–75 m (A), 75–200 m (B) and 360–400 m (F). The first aim of the study was to identify which biomarkers characterize these specific intervals. The second aim, addressing the transitions zones of these intervals, was to extend the changes in the characteristics of the organic substance, to reflect the changes of conditions in the depositional environment as well as to define biomarker parameters which are the most sensitive sedimentological indicators.The sediments from the hypersaline anoxic and alkaline environment show high contribution of algal precursor biomass, what is in accordance with the good quality of organic substances in the sediments from these zones. High squalane content and low content of regular isoprenoid C25 are typical for hypersaline anoxic environment, whereas sediments from alkaline environment have high regular isoprenoid C25 content.Transition to specific sedimentation zones is characterized by change in total organic matter content, and of both free and pyrolysis-derived, and change in hydrogen index value. In the biomarker distributions, more significant changes were detected in distributions of n-alkanes and isoprenoids, compared to polycyclic alkanes. The most intensive changes in alkane distribution are reflected in changes in n-C17 content compared to n-C27, and phytane compared to n-C18. In addition, significant sensitivity was seen in ratios between squalane and n-alkane C26 (hypersaline depositional environment), or isoprenoid C25 and n-alkane C22 for high alkalinity environment.This study showed that Sq/n-C26 ratio can be used to assess the quality of organic substance in immature lacustrine sediments.  相似文献   

8.
In this study, the stable isotope and trace element geochemistries of meteoric cements in Pleistocene limestones from Enewetak Atoll (western Pacific Ocean), Cat Island (Bahamas), and Yucatan were characterized to help interpret similar cements in ancient rocks. Meteoric calcite cements have a narrow range of δ18O values and a broad range of δ13C values in each geographical province. These Pleistocene cements were precipitated from water with stable oxygen isotopic compositions similar to modern rainwater in each location. Enewetak calcite cements have a mean δ18O composition of ?6.5%0 (PDB) and δ13C values ranging from ?9.6 to +0.4%0 (PDB). Sparry calcite cements from Cat Island have a mean δ18O composition of ?4.1%0 and δ13C values ranging from ?6.3 to + 1.1%0. Sparry cements from Yucatan have a mean δ18O composition of ?5.7%0 and δ13C values of ?8.0 to ?2.7%0. The mean δ18O values of these Pleistocene meteoric calcite cements vary by 2.4%0 due to climatic variations not related directly to latitude. The δ13C compositions of meteoric cements are distinctly lower than those of the depositional sediments. Variations in δ13C are not simply a function of distance below an exposure surface. Meteoric phreatic cements often have δ13C compositions of less than —4.0%0, which suggests that soil-derived CO2 and organic material were washed into the water table penecontemporaneous with precipitation of phreatic cements. Concentrations of strontium and magnesium are quite variable within and between the three geographical provinces. Mean strontium concentrations for sparry calcite cements are, for Enewetak Atoll, 620 ppm (σ= 510 ppm); for Cat Island, 1200 ppm (σ= 980 ppm); and for Yucatan, 700 ppm (σ= 390 ppm). Equant cements, intraskeletal cements, and Bahamian cements have higher mean strontium concentrations than other cements. Equant and intraskeletal cements probably precipitated in more closed or stagnant aqueous environments. Bahamian depositional sediments had higher strontium concentrations which probably caused high strontium concentrations in their cements. Magnesium concentrations in Pleistocene meteoric cements are similar in samples from Enewetak Atoll (mean =1.00 mol% MgCO3; σ= 0.60 mol% MgCO3) and Cat Island (mean = 0.84 mol% MgCO3; σ= 0.52mol% MgCO3) but Yucatan samples have higher magnesium concentrations (mean = 2.20 mol% MgCO3: σ= 0.84mol% MgCO3). Higher magnesium concentrations in some Yucatan cements probably reflect precipitation in environments where sea water mixed with fresh water.  相似文献   

9.
Using the clumped isotope method, the temperature of dolomite and calcite formation and the oxygen isotopic composition (δ18Ow) of the diagenetic fluids have been determined in a core taken from the Arab‐D of the Ghawar field, the largest oil reservoir in the world. These analyses show that while the dolomites and limestones throughout the major zones of the reservoir recrystallized at temperatures between ca 80°C and 100°C, the carbonates near the top of the reservoir formed at significantly lower temperatures (20 to 30°C). Although the δ18O values of the diagenetic fluids show large variations ranging from ca <0‰ to ca +8‰, the variations exhibit consistent downhole changes, with the highest values being associated with the portion of the reservoir with the highest permeability and porosity. Within the limestones, dolomites and dolomites associated with the zone of high permeability, there are statistically significant different trends between the δ18Ow values and recrystallization temperature. These relationships have different intercepts suggesting that fluids with varying δ18Ow values were involved in the formation of dolomite and limestone compared to the formation of dolomite associated with the zone of high permeability. These new data obtained using the clumped isotope technique show how dolomitization and recrystallization by deep‐seated brines with elevated δ18Ow values influence the δ18O values of carbonates, possibly leading to erroneous interpretations unless temperatures can be adequately constrained.  相似文献   

10.
This study formulates a comprehensive depositional model for hydromagnesite–magnesite playas. Mineralogical, isotopic and hydrogeochemical data are coupled with electron microscopy and field observations of the hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Four surface environments are recognized: wetlands, grasslands, localized mounds (metre‐scale) and amalgamated mounds composed primarily of hydromagnesite [Mg5(CO3)4(OH)2·4H2O], which are interpreted to represent stages in playa genesis. Water chemistry, precipitation kinetics and depositional environment are primary controls on sediment mineralogy. At depth (average ≈ 2 m), Ca–Mg‐carbonate sediments overlay early Holocene glaciolacustrine sediments indicating deposition within a lake post‐deglaciation. This mineralogical change corresponds to a shift from siliciclastic to chemical carbonate deposition as the supply of fresh surface water (for example, glacier meltwater) ceased and was replaced by alkaline groundwater. Weathering of ultramafic bedrock in the region produces Mg–HCO3 groundwater that concentrates by evaporation upon discharging into closed basins, occupied by the playas. An uppermost unit of Mg‐carbonate sediments (hydromagnesite mounds) overlies the Ca–Mg‐carbonate sediments. This second mineralogical shift corresponds to a change in the depositional environment from subaqueous to subaerial, occurring once sediments ‘emerged’ from the water surface. Capillary action and evaporation draw Mg–HCO3 water up towards the ground surface, precipitating Mg‐carbonate minerals. Evaporation at the water table causes precipitation of lansfordite [MgCO3·5H2O] which partially cements pre‐existing sediments forming a hardpan. As carbonate deposition continues, the weight of the overlying sediments causes compaction and minor lateral movement of the mounds leading to amalgamation of localized mounds. Radiocarbon dating of buried vegetation at the Ca–Mg‐carbonate boundary indicates that there has been ca 8000 years of continuous Mg‐carbonate deposition at a rate of 0·4 mm yr?1. The depositional model accounts for the many sedimentological, mineralogical and geochemical processes that occur in the four surface environments; elucidating past and present carbonate deposition.  相似文献   

11.
This study provides a compilation of the paleointensity records for the Cretaceous period derived from sediments of the Russian Plate and adjacent areas. The paleoinetensity values were calibrated using the laboratory redeposition experiments. Remarkable differences in the relative paleointensity variations were detected at the Berriasian–Early Barremian, Late Barremian–Santonian and Early–Late Maastrichtian boundaries. In the Berriasian–Early Barremian interval, the paleointensity varied stochastically, with the amplitude of about 1Ho and the mean value of 0.63Ho (Ho is the present-day geomagnetic field intensity assumed to be 40 μT). The records for the Barremian–Santonian give a picture of the geomagnetic field with alternating high- and low-amplitude features. The mean paleointensities remain constantly high (being on average 0.87Ho), and intervals of low-amplitude variation alternate with the pronounced bursts (3.5Ho). The Late Maastrichtian interval is characterized by high-amplitude paleointensity variations (4Ho) and a sharp drop towards the end of the interval. All records show remarkable similarities near the boundaries between geological time intervals, which are an increase in the amplitude and mean values of intensity at the end of intervals followed by a decrease towards the beginning of the subsequent interval.  相似文献   

12.
Multiple sediment cores were collected in June 1994 in the turbidity maximum zone of the Hudson River estuary off Manhattan, New York. Results from X-radiography of the sediments and measurements of natural radionuclides (234Th,7Be, and210Pb) and trace metals (Ag, Cd, Cu, Pb, and Zn) show significant spatial variability of sediment composition and structure and patchy distributions of radionuclides activities and trace metal concentrations in this small area (0.6 km × 0.5 km). Radionuclide and trace metal analyses confirm prior work (Olsen et al. 1978; Olsen et al. 1981; Hirschberg et al. 1996) that show the western margin area of the river acts as a repository of these chemical constituents at least for the short-term period (0.5–1 yr), and the mid-channel area is not a depositional area for sediments and associated chemical constituents.7Be profiles reveal short-term sediment deposition rates ranging from 6 cm yr?1 to 26 cm yr?1 in the western margin area. Significant spatial variations in excess234Th and7Be inventories (up to a factor of 10 and 5 for234Th and7Be, respectively) are found in the western margin depositional area, although the inventories are balanced, on average, with in situ production in water column and atmospheric supply. The spatial variation of surficial excess210Pb and trace metal concentrations in depositional areas of the western margin are ≤10% for Ag, Cu, Pb, and Zn and 29% for Cd. However, the variations in the transition zone range from 28% to 93%. This variability is likely related to variations in tidal current velocity, bottom shear stress, and river channel morphology.  相似文献   

13.
Major, trace and rare earth elements (REE) concentrations in limestone beds of the Asu River Group within the Middle Benue Trough were measured to understand the depositional conditions, characteristics and source of REE. The limestone has high content of CaO (Average of 46.55%), followed by SiO2 (Average of 7.90 %), Fe2O3(t), MgO and Al2O3. The limestones are depleted in most of the trace elements (Co, V, Rb, Ba, Zr, Y, Nb, Hf and Th) when compared with the Post-Archean Australian Shale (PAAS). The observed large variations in ΣREE contents among various limestones of the present study (12.22 to 142.53ppm) are mainly due to the amount of terrigenous matter present in them. The characteristics of non-seawater-like REE patterns, elevated REE concentrations, high LaN/YbN ratios and low Y/Ho ratios, suggest that the observed variations in ΣREE contents are mainly controlled by the amount of detrital sediments in the limestones of the Asu River Group in the middle Benue trough. The observed variations in Ce contents and Ce anomalies in the studied samples resulted from detrital input. The limestones show positive Mn* values (0.30 to 0.78) and low contents of U (~0.60–3.20 ppm) suggesting that they were deposited under oxygen-rich environment.  相似文献   

14.
Modern sediments of Mono Lake show marked variation in lipid composition with depositional environment. Constituents derived from the drainage basin, characterized by high molecular weight alkane hydrocarbons (C25–C31), and the steroids β-sitosterol and brassicasterol, predominate in near-shore environments. In the deepest part of the lake, sediments exhibit a combination of externally-derived constituents, and lipids derived from the lake biota; the latter characterized by low molecular-weight alkanes and alkenes (C15–C17), phytane, and the steroids ergost-7-en-3β-ol and 24-ethylcholest-7-en-3-β-ol. Steranes, 4-methylsteranes, and the C18 and C19 isoprenoids appear to be forming in the intensely reducing bottom sediments at the present time.The compositions of samples from the Pleistocene succession of Mono Basin suggest that sample-to-sample variation within the same stratum is negligible so long as unweathered samples from the same depositional environment are compared. Sediments having equivalent lithologies may or may not have similar compositions, but sediments having similar fossil contents do show similar lipid compositions. Subaerial weathering of sediments causes a marked decrease in the amount of extractable organic material, as well as distinct changes in its hydrocarbon composition. Specifically, weathered sediments exhibit a decrease in relative content of low molecular weight hydrocarbons and a relative increase in nC22.Organic composition of sediments from the Pleistocene stratigraphie column cannot be correlated with depth of burial. Compositional changes with stratigraphie position are probably related to paleo-ecological factors such as population or productivity rather than depth of burial. Lithology and organic composition provide mutually-corroborating evidence regarding glacial advances in the adjacent Sierra Nevada Mountains. During glaciations, the lake sediments are rich in sandstones, and the organic composition shows a predominance of externally-derived debris, with no evidence for contributions from the lake biota.  相似文献   

15.
The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian–Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive–regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate–siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.  相似文献   

16.
The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland   总被引:4,自引:0,他引:4  
The dolomites at Navan, Ireland, formed in Courceyan peritidal and shallow-shelf limestones. The dolomite body has a plume-like geometry, cross-cutting both lithological boundaries and diagenetic barriers generated by sea-floor cementation and emergence. The dolomitizing fluids rose parallel to major faults to diffuse laterally through the succession, controlled by variations in permeability that reflect both facies variation on deposition and pre-dolomitization diagenesis. Cathodoluminescent zones reveal three principal stages of dolomite emplacement, separated by dissolution surfaces, with each stage reflecting several changes in the character of dolomitizing solutions. The predominance of dull zones indicates burial rather than surface conditions. The dolomites formed some time after burial in response to an areally limited hydrothermally-driven flow. Isotope values (σ18O of — 6σ6 to — 10.4%δ and σ13C of — 0σ2 to +2σ5%δ PDB), and fluid inclusion data, suggest that these fluids had compositions similar to those of Carboniferous seawater. However, these became hotter with time, with temperature increasing from 60 to 160δC. The Navan dolomites are closely associated with Europe's largest zinc-lead deposit. The distribution of the ores follows the same trend as that of the dolomites and paragenetic relationships indicate that dolomitization and mineralization were temporally and genetically related.  相似文献   

17.
Dolomites occur extensively in the lower Cretaceous along syn-sedimentary fault zones of the Baiyinchagan Sag, westernmost Erlian Basin, within a predominantly fluvial–lacustrine sedimentary sequence. Four types of dolomite are identified, associated with hydrothermal minerals such as natrolite, analcime and Fe-bearing magnesite. The finely-crystalline dolomites consist of anhedral to subhedral crystals (2 to 10 μm), evenly commixed with terrigenous sediments that occur either as matrix-supporting grains (Fd1) or as massive argillaceous dolostone (Fd2). Medium-crystalline (Md) dolomites are composed of subhedral to euhedral crystals aggregates (50 to 250 μm) and occur in syn-sedimentary deformation laminae/bands. Coarse-crystalline (Cd) dolomites consist of non-planar crystals (mean size >1 mm), and occur as fracture infills cross-cutting the other dolomite types. The Fd1, Md and Cd dolomites have similar values of δ18O (−20·5 to −11·0‰ Vienna PeeDee Belemnite) and δ13C (+1·4 to +4·5‰ Vienna PeeDee Belemnite), but Fd2 dolomites are isotopically distinct (δ18O −8·5 to −2·3‰ Vienna PeeDee Belemnite; δ13C +1·4 to +8·6‰ Vienna PeeDee Belemnite). Samples define three groups which differ in light rare-earth elements versus high rare-earth elements enrichment/depletion and significance of Tb, Yb and Dy anomalies. Medium-crystalline dolomites have signatures that indicate formation from brines at very high temperature, with salinities of 11·8 to 23·2 eq. wt. % NaCl and Th values of 167 to 283°C. The calculated temperatures of Fd1 and Cd dolomites extend to slightly lower values (141 to 282°C), while Fd2 dolomites are distinctly cooler (81 to 124°C). These results suggest that the dolomites formed from hydrothermal fluid during and/or penecontemporaneous with sediment deposition. Faults and fractures bounding the basin were important conduits through which high-temperature Mg-rich fluids discharged, driven by an abnormally high heat flux associated with local volcanism. It is thought that differing amounts of cooling and degassing of these hydrothermal fluids, and of mixing with lake waters, facilitated the precipitation of dolomite and associated minerals, and resulted in the petrographic and geochemical differences between the dolomites.  相似文献   

18.
Detailed chemical and mineralogical data are presented for 37 samples of surface sediments collected from the Kalloni gulf, (eastern half), Lesvos island, northern Greece. The sediments are largely carbonate-rich muds, though near the eastern and northern coast of the gulf higher proportions of biogenic and lithogenic sands and gravels occur. The main minerals are quartz, feldspar (andesine), clay minerals (montmorillonite, illite, Kaolinite) and the carbonate minerals (calcite, Mg-calcite, aragonite). The mathematical method of factor analysis was applied in order to explain the mineralogical and geochemical variations. These variations can be interpreted in terms of variations in provenance and depositional environment. Six factors were produced accounting for 83.6 % of the total data variance: (a) a Si-Al-Na-K-Ti-Rb-Ba-Y-Zr factor controlled by clays and detrital minerals such as feldspars and zircon opposed by a CaCO2-Cu-Sc-Sr-La association (carbonate, minerals), (b) an organic carbon factor (C-Fe-Ce-Zn-Rb-Ni-Y-Nb), (c) a Fe-Mg-Cr-Ni factor representing control by peridotite, (d) a Ce-Nd-Fe-Ni-Zn-La factor controlled by silicate minerals, (e) a Al-Fe-Ti-P-V factor controlled by chlorite amphiboles or pyroxenes of volcanic or basaltic intrusions, (f) a Mn-Fe-Zn-factor controlled by iron-manganese oxides. Similarities in trace element composition among Kalloni gulf bottom sediments, and source lithologies indicate that the trace elements are derived from the adjacent landmasses. The AI/Ti ratio of the sediments is consistent with the terrigenous nature of sendimentation in the Kalloni gulf.  相似文献   

19.
The grain-size statistics and environmental conditions of deposition of the beach and dune sediments from the Calangute region, Goa, have been studied. The results of Student's t test and bivariate plots reveal that there exist distinct differences in grain-size parameters of the sediments from different environments and that these differences are highly significant. The study shows that the variations in mean grain size (Mz), graphic standard deviation (O1), graphic skewness (Sk1), simple sorting measure (Sos) and simple skewness measure (Os) are significant in identifying the sediments from different environments. Further, the study reveals the usefulness of grain-size parameters not only in differentiating beach and dune sediments, but also in delineating the beach into foreshore and backshore. The differences in grain-size characteristics of the sediments between the environments reflect the transport, erosional and depositional mechanisms (active hydrodynamic processes in the beach foreshore and aerodynamic processes in the backshore and dune environments) prevailing in the area of study.  相似文献   

20.
The Triassic–Jurassic South Georgia Rift (SGR) Basin, buried beneath Coastal Plain sediments of southern South Carolina, southeastern Georgia, western Florida, and southern Alabama, consists of an assemblage of continental rift deposits (popularly called red beds), and mafic igneous rocks (basalt flows and diabase sills). The red beds are capped by basalts and/or diabase sills, and constitute the target for supercritical CO2 storage as part of a Department of Energy funded project to study the feasibility for safe and permanent sequestration. The purpose of this research is to evaluate subsurface suitability for underground CO2 storage in terms of the local and regional distribution of porous and permeable reservoirs. In addition, unlike shale-capped CO2 reservoirs, very little is known about the ability of basalts and diabase sills to act as viable seals for CO2 storage. New results demonstrate the presence of confined porous rocks that may be capable of storing significant quantities of supercritical CO2. Reservoir thicknesses as high as 420 m and an average porosity as high as 14 % were obtained. The SGR Basin manifests distinct porosity–permeability regimes that are influenced by the depositional environments. These are: a high-porosity, medium/low-permeability zone associated with lacustrine deposits, a medium/low-porosity, low-permeability zone dominated by fluvial fine- to very fine-grained sandstone, and an extremely low porosity and permeability zone characterized by fluvial and alluvial-fan deposits. Analyses further show that the basalt flows and diabase sills are characterized by low porosity as well as high seismic velocities and densities that are favorable to caprock integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号