首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.  相似文献   

2.
Observations have shown that the monsoon is a highly variable phenomenon of the tropical troposphere, which exhibits significant variance in the temporal range of two to three years. The reason for this specific interannual variability has not yet been identified unequivocally. Observational analyses have also shown that EI Niño indices or western Pacific SSTs exhibit some power in the two to three year period range and therefore it was suggested that an ocean-atmosphere interaction could excite and support such a cycle. Similar mechanisms include land-surface-atmosphere interaction as a possible driving mechanism. A rather different explanation could be provided by a forcing mechanism based on the quasi-biennial oscillation of the zonal wind in the lower equatorial stratosphere (QBO). The QBO is a phenomenon driven by equatorial waves with periods of some days which are excited in the troposphere. Provided that the monsoon circulation reacts to the modulation of tropopause conditions as forced by the QBO, this could explain monsoon variability in the quasi-biennial window. The possibility of a QBO-driven monsoon variability is investigated in this study in a number of general circulation model experiments where the QBO is assimilated to externally controlled phase states. These experiments show that the boreal summer monsoon is significantly influenced by the QBO. A QBO westerly phase implies less precipitation in the western Pacific, but more in India, in agreement with observations. The austral summer monsoon is exposed to similar but weaker mechanisms and the precipitation does not change significantly.  相似文献   

3.
Using the longest and most reliable ozonesonde data sets grouped for four regions (Japan, Europe, as well as temperate and polar latitudes of Canada) the comparative analysis of regional responses of ozone, temperature, horizontal wind, tropopause and surface pressure on the equatorial quasi-biennial oscillation (QBO effects), manifesting in opposite phases of the 11-year solar cycle (11-yr SC) was carried out. The impact of solar cycle is found to be the strongest at the Canadian Arctic, near one of two climatological centres of polar vortex, where in solar maximum conditions the QBO signals in ozone and temperature have much larger amplitudes, embrace greater range of heights, and are maximized much higher than those in solar minimum conditions. The strengthening of the temperature QBO effect during solar maxima can explain why correlation between the 11-yr SC and polar winter stratospheric temperature is reversed in the opposite QBO phases. At the border of polar vortex the 11-yr SC also modulates the QBO effect in zonal wind, strengthening the quasi-biennial modulation of polar vortex during solar maxima that is associated with strong negative correlation between stratospheric QBO signals in zonal wind and temperature. Above Japan the QBO effects of ozone, temperature, and zonal wind, manifesting in solar maxima reveal the downward phase dynamics, reminding similar feature of the zonal wind in the equatorial stratosphere. Above Europe, the QBO effects in solar maxima reveal more similarity with those above Japan, while in solar minima with the effects obtained at the Canadian middle-latitude stations. It is revealed that the 11-yr SC influences regional QBO effects in tropopause height, tropopause temperature and surface pressure. The influence most distinctly manifest itself in tropopause characteristics above Japan. The results of the accompanying analysis of the QBO reference time series testify that in the period of 1965–2006 above 50-hPa level the duration of the QBO cycle in solar maxima is 1–3 months longer than in solar minima. The differences are more distinct at higher levels, but they are diminished with lengthening of the period.  相似文献   

4.
北半球冬季行星波的传播及其输运作用   总被引:20,自引:0,他引:20  
利用变换欧拉平均方程讨论了行星波动力学。观测和模拟结果都表明,在北半球冬季准定常行星波的经向传播存在两支波导。一支为高纬度波导,另一支则为低纬度波导。这些结果与理论分析相当一致。通过对EP通量进一步的研究表明,平流层爆发性增温是沿高纬度波导传播的异常行星波与平均气流相互作用的结果。而热带风场的准两年周期振荡(QBO)是低纬度平流层下层大气纬向平均流的一个重要年际变化,它可以影响行星波沿低纬度波导的传播;此外,由一个行星波一平均流耦合模式模拟的结果表明,这个热带风场的变化还可以通过波流相互作用调制行星波沿高纬度波导的传播。 行星波对臭氧的输运作用在文中也进行了分析。行星波强迫出的剩余平均环流表明,耗散的行星波有强的输运作用;向北的涡动热量输送可以强迫出一个正的输运环流,其在低纬度上升并在高纬度下沉。同时研究还表明,热带风场的QBO对行星波传播的调制对输运环流也有重要影响,模式结果表明,在QBO的东风位相期间行星波引起的输运作用明显增强,其结果可用于解释平流层高纬度臭氧的年际变化。  相似文献   

5.
平流程准两年振荡(QBO)是赤道平流层(~100-1 hPa)变率的主要模态,可对中高纬地区的环流产生重要影响,但目前利用通用大气环流模式(GCM)对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式(IAP-AGCM)的中高层大气模式版本(IAP-AGCML69)对QBO进行模拟,并对其动量收支情况进行分析.研究发现,QBO主要是由对流活动引起的重力波强迫(参数化)引起的,但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献,在上平流层,其量值大小与参数化的重力波强迫相当.以上结果提供了QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

6.
An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.  相似文献   

7.
By using a five-layer primitive equation model with P-sigma coordinates,the effect of convective heating source with the oscillation of a dipole pattern over the tropical Indian Ocean-Western Pacific on Asian summer monsoon is investigated.The results from simulations show that the oscillatary heating source may cause oscillations in east-west zonal circulation at the equator,in cross-equatorial flow,in meridional monsoon circulation and in the phase of high-low level circulation over Asia,with period same as that of the oscillating heat source.Furthermore,the influence mechanism of the tropical heating source associated with oscillations on Asian summer monsoon circulation is also studicd.It is clearly shown that the westward propagation of thermally-forced Rossy waves to the west of the oscillatary heating source and the northward propagation of disturbances can give rise to oscillations of the equatorial east-west zonal circulation and monsoonal meridional circulation.Finally,the oscillation of all the Asian summer monsoon circulation is formed.  相似文献   

8.
A nonlinear principal component analysis (NLPCA) is applied to a set of monthly mean time series from January 1956 to December 2007 consisting of the Arctic oscillation (AO) index derived from 1,000-hPa geopotential height anomalies poleward of 20°N latitude and the zonal winds observed at seven pressure levels between 10 and 70?hPa in the equatorial stratosphere to investigate the relation of the AO with the quasi-biennial oscillation (QBO). The NLPCA is conducted using a new, compact neural network model. The NLPCA modeling of the dataset of the AO index and QBO winds offers a clear picture of the relation between the two oscillations. In particular, the phase of covariation of the oscillations defined by the two nonlinear principal components of the dataset progresses with a predominant 28.4-month periodicity. This predominant cycle is modulated by an 11-year cycle. The variation of the AO index with the QBO phase also shows that the average AO index is positive when the westerly QBO phase descends past 30?hPa and, conversely, the average AO index is negative when the easterly QBO phase descends past 30?hPa. This relationship is evident during the boreal cold season from November to April but non-existent during the boreal warm season from May to October.  相似文献   

9.
Abstract

The general circulation of the tropical stratosphere, mesosphere and lowermost thermosphere is discussed at a tutorial level. Observations of the quasi‐biennial and semiannual oscillations by both in situ and satellite techniques are first reviewed. The basic dynamics controlling the zonal‐mean component of the circulation are then discussed. The role of radiative diabatic cooling in constraining the zonal‐mean circulation in the middle atmosphere is emphasized. It is shown that the effectiveness of this radiative constraint is reduced at low latitudes, allowing for the sustained mean flow accelerations over long periods of time characteristic of the quasi‐biennial and semiannual oscillations in the tropics.

The current view is that the dominant driving for the equatorial mean flow accelerations seen in the middle atmosphere derives from vertically‐propagating waves. This process is illustrated here in its simplest context, i.e. the Plumb (1977) model of the interaction of monochromatic internal gravity waves with the mean flow (based on earlier work of Lindzen and Holton, 1968; Holton and Lindzen, 1972). It is shown that the dynamics illustrated by this simple model can serve as the basis for an explanation of the quasi‐biennial oscillation.

The paper then describes some of recent developments in the theory of the quasi‐biennial and semiannual oscillations, including aspects related to the interaction between tropics and midlatitudes in the middle atmosphere. The paper concludes with a discussion of the effects of the long period dynamical variations in the tropical circulation on the chemical composition of the stratosphere.  相似文献   

10.
 In this study, previous evaluations of the monthly mean structure of the tropical lower stratosphere in reanalyzed datasets are extended to include the period 1958–1978, when no satellite-based observations were available. It is shown that a large discontinuity, in temperatures near the tropical tropopause, in the NCEP data occurred when the Tiros Operational Vertical Sounder (TOVS) became operational. When only rawinsonde data were available, the tropopause temperatures in the NCEP dataset are in better agreement with ERA data for TOVS period. Both NCEP and NASA reanalyses show similar deviations from the ERA data in the TOVS renalyses show similar deviations from the ERA data in the TOVS period. There is also a stepwise change in the lower stratospheric meridional velocity when the TOVS data were introduced into the NCEP reanalyses. This discontinuity is such that in the 1958–1978 period, the annual cycle in zonal mean meridional velocity in the NCEP data resembles that of the ERA data in the 1979–1993 period. The differences are shown to result from large changes in the local meridional flow in the Indonesian region. The temporal consistency of the QBO is examined; it is shown that the NCEP assimilation system is sensitive to the data available. There is a change in the zonally asymmetric structure of the zonal wind over time, presumably related to the changes in input data and the inability of the model to represent the three-dimensional structure of the tropical lower stratosphere. These results provide further evidence of the value of rawinsonde data in data assimilation systems as well as the need to use satellite radiance data in an appropriate manner. Received: 7 April 1997 / Accepted: 4 September 1998  相似文献   

11.
NUMERICAL INVESTIGATION OF QBO IN OZONE   总被引:1,自引:0,他引:1  
In this paper, a two-dimensional primitive equation model, coupling dynamical, radiative andphotochemical processes, is used to simulate the quasi-biennial oscillation (QBO) in ozone. TheQBO in total ozone has been successfully simulated when the forcing of equatorial stratosphericQBO in zonal wind is imposed. The simulated characters of QBO in ozone are in close agreementwith those observed. We further analyzed the mechanism of formation and maintenance of QBO inozone. In the different phases of QBO in equatorial stratospheric wind field, the global circulationhas so great difference that it makes the effects of advection transfer and eddy transfer present aquasi-biennial periodical variation. Chemical effect and dynamical effect are basically out-of-phase.They together form and maintain the QBO in ozone. Total variation rate is a tiny difference of thetwo large amounts. At the lower level of middle-high latitudes, however, it has a phase differenceof about 1-2 months between dynamical and negative chemical effects, where the dynamical effectis comparatively greater. QBO in ozone has no clear counter effects on atmospheric circulation. The experiment resultsshow that the effects of QBO in ozone on temperature field and wind field are very small.  相似文献   

12.
The time series of sea surface temperature (SST), sea level pressure (SLP), zonal wind (U) and total cloudiness (CA), for the period of 1950-1979, over a 8o×8o grid-point latitudinal belt between 32oS and 32oN are made from COADS (Comprehensive Ocean-Atmosphere Data Set). The time harmonic analysis and power spectra analysis show that there exist quasi-biennial oscillation (QBO), three and half years oscillation (SO), five and half years oscillation (FYO) and eleven years oscillation (EYO) in these time series. The main propagation characteristics of these interannual low-frequency oscillations are as follows:(1) The variance analysis of SST shows that there is an active region of QBO and SO (with maximum variance), coming from the southwestern part of the subtropical Pacific, stretching eastward up to the west coast of South America, and then northward to the eastern equatorial Pacific. The QBO and SO disturbances of SST follow the same route and cause the anomaly of SST (El Nino and period of cold water) in the eastern equatorial Pacific.(2) Either the QBO or SO of SST can cause El Nino events, although it is easier when they are situated in the same phase of warm water at the eastern equatorial Pacific. The FYO of SST seems to be a standing oscillation. It plays an important role on the formation of strong El Nino events or strong cold water events.(3) The QBO and SO of U propagate eastward along the equator. The origin of QBO and SO may at least be traced as far as the western Indian Ocean. While they propagate along the equator, it strengthens two times at 90oE and the western Pacific, respectively. Like SST, the FYO of U is somehow a standing oscillation.(4) The Oscillations of U have a good coupling relationship with those of SST, while they propagate. When the QBO and SO of SST move to the east side of the eastern equatorial Pacific, it is the time for the QBO and SO of U to enter into the east part of the western Pacific.It is clear that, when we do research work on the formation of El Nino events, our consideration would not be confined to the tropics, it should cover the subtropical region in the southern Pacific. The features of the circulation and other oceanic states in this area are very important to the El Nino events.  相似文献   

13.
利用NCAR的包含化学、辐射、动力相互作用的二维模式就纬向风的准两年周期振荡 (简称QBO)对平流层微量元素分布的影响进行数值模拟试验。模拟中 ,输入纬向风QBO的值 ,计算出NOx、臭氧浓度和各种气象要素的垂直经向分布 ,并与不考虑QBO强迫的数值模拟结果进行对比。在第I部分HALOE资料分析的基础上 ,进一步讨论了在纬向风QBO的影响下NOx浓度垂直分布的变化及其准两年周期振荡 ,并研究了NOx的QBO与臭氧QBO的关系。结果表明 :模拟六年平均的NOx混合比分布与观测结果基本一致 ,并且在纬向风场QBO强迫下 ,NOx混合比扰动有明显的准两年周期振荡 ;与臭氧的QBO比较 ,发现在2 8km以下 ,NOx的QBO与臭氧QBO同位相 ,而在 2 8km以上 ,它们则是反位相 ,与HALOE资料的观测结果基本吻合。文中对模拟得到的由于风场QBO引起的余差环流输送作用做了进一步的分析 ,并讨论了在不同高度的气层中余差环流的输送作用与NOx破坏作用在臭氧QBO形成中的相对重要性  相似文献   

14.
王春晓  田文寿 《大气科学》2017,41(2):275-288
利用2005~2014年10年的卫星微波临边探测仪(MLS)资料分析了热带平流层一氧化碳(CO)体积混合比的年际变率,发现热带平流层CO浓度的准两年振荡(QBO)在30 hPa高度附近存在明显的位相变化特征。大气化学气候模式模拟结果表明,热带平流层CO的准两年振荡信号是化学和动力过程共同作用的结果,而动力作用主要是QBO引起的次级经向环流引起的物质传输。化学和动力过程共同作用导致热带平流层CO浓度的垂直梯度在30 hPa高度处发生反转,进而产生一氧化碳QBO信号的位相变化。此外,化学气候模式模拟结果还表明,与CO有关的化学过程不但可以减弱一氧化碳QBO信号的振幅,还可以在热带30~10 hPa高度范围内造成一氧化碳QBO和纬向风QBO信号之间约3个月的时间差。  相似文献   

15.
By the use of space-time spectral analysis and band-pass filter, some of the features of the medium-range Oscillations in the summer tropical easterlies (10oS-20o) at 200 hPa are investigated based on a two-year (1980 and 1982) wind (u, v) data set for the period from May to September. Space-time power spectral analysis shows that the total energy of the westward moving waves was the largest and that of the standing waves and eastward moving waves was relatively small in the 200 hPa easterlies; the total energy of the eastward moving waves was at minimum at 10oN. Three kind of the medium-range oscillations with about 50 day, 25 day and quasi-biweekly periods were found in the easterlies, which all show a remarkable interannual variation and latitudinal differences in these two years. The wave energy of zonal wind is mainly associated with the planetary waves (1-3), which all may make important contributions to the 50 day and 25 day oscillations in different years or different latitudes. The quasi-biweekly oscillation is mainly related to the synoptic waves (4-6). In equatorial region, the 50 day oscillation was dominant with a eastward phase propagation in 1982 while the dominant oscillation in 1980 was of 25day period with a westward phase propagations in 1980. Both of them are of the mode of zonal wavenumber 1. Strong westward 50 day oscillation was found in 10oN-20oN in these two years. Regular propagations of the meridional wind 50 day oscillation were also found in the easterlies.The 50 day and 25 day oscillation of zonal wind all demonstrate southward phase propagation over the region of the South Asia monsoon and northward phase propagation near interational date line, where are the climatic mean position of the tropical upper-tropospheric easterly jet and the tropical upper tropospheric trough (TUTT), respectively.  相似文献   

16.
The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30?hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30?hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.  相似文献   

17.
Abstract

It is shown that oscillating mean flow solutions exist in the one‐dimensional Holton‐Lindzen (1972) model in the presence of a single Kelvin wave, mean flow diffusion, and an easterly zonal force per unit mass that is constant in height and time except at those points in the time‐height cross‐section where the latitudinally‐integrated mean flow is less than some prescribed easterly value. The latter forcing is intended to crudely represent the absorption of quasi‐stationary planetary Rossby waves at the tropical zero‐wind line. Our results suggest an alternative, and somewhat simpler, possible interpretation of the quasi‐biennial mean zonal wind oscillation in the equatorial lower stratosphere.  相似文献   

18.
The quasi-biennial oscillation (QBO), a dominant mode of the equatorial stratospheric (~100–1 hPa) variability, is known to impact tropospheric circulation in the middle and high latitudes. Yet, its realistic simulation in general circulation models remains a challenge. The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model (IAP-AGCML69) and analyze its momentum budget. The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection, but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere. Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere. Results provide insights into the mechanism of the QBO and possible causes of differences in models.摘要平流层准两年振荡 (QBO) 是赤道平流层 (~100–1 hPa) 变率的主要模态, 可对中高纬地区的环流产生重要影响, 但目前利用通用大气环流模式 (GCM) 对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式 (IAP-AGCM) 的中高层大气模式版本 (IAP-AGCML69) 对QBO进行模拟, 并对其动量收支情况进行分析.研究发现, QBO主要是由对流活动引起的重力波强迫 (参数化) 引起的, 但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献, 在上平流层, 其量值大小与参数化的重力波强迫相当.以上结果提供了对QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

19.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

20.
1.IntroductionThelow~frequencyoscillation(LFO)isaveryimPOrtantweatherphenomenonintheatmosphere.The30--50--dayandquasichiweeklyoscillationsinthetropicalatmospherearemostintensivelystudied,andcomParativelyspeaking,anotherkindofLFOconcernillgtheQBOofthestratosphericzonalwindsismuchlessstudied,which,althoughoccurringinthestratosphere,bearsacloserelationtothetroposphericactivitiesandtheevolutionoflow--latitudecirculationssothatitisworthwhiletoexploreindepththephysicalmechanismfortheQBOoccurre…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号