首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depth-discrete aquifer in formal ion was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and hulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of Lime and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge lest data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology.
Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity, Tracer lest and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated lo be 73 ft/d, approximately three limes higher than that calculated using the full length of the screened test interval.  相似文献   

2.
Introduction of the large gravity irrigation system in the Indus Basin in the late 19th century without a drainage system resulted in a rising water table, which resulted in water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem, the Pakistan government initiated installation of 10,000 tube wells in different areas. This not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the irrigation opportunities motivated framers to install private tube wells. The Punjab area meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tube wells, creating a pattern of private and public water control. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. The field work in the Lagar irrigated area, discussed in this paper, show that within the general picture of conjunctive use of canal water and groundwater, there is a clear spatial pattern between upstream and downstream areas, with upstream areas depending much less on groundwater than downstream areas. The irrigation context in the study area proves to be highly complex, with water users having differential access to canal and tube well water, resulting in different responses of farmers with their irrigation strategies, which in turn affect the salinity and water balances on the fields.  相似文献   

3.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

4.
5.
6.
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.  相似文献   

7.
The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy‐efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well‐developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models.  相似文献   

8.
One of the more common techniques for controlling the migration of contaminant plumes is the use of pumping wells to produce desired changes in local flow rates and hydraulic gradients. When seeking to optimize an array of pumping well locations and discharge rates, it is important to consider the effects that non-ideal aquifer conditions, well construction and demographic constraints produce. Heterogeneous and anisotropic aquifer conditions seriously complicate siting and discharge rate requirements for pumping wells because of the distorted cones of depression that result from withdrawing water in such settings. Proper screen selection, gravel pack emplacement and well development are crucial factors affecting the operational characteristics and economics of pumping wells; these factors are generally recognized, though often undervalued. The impacts that well depth and diameter, and screen length and position have on the effectiveness of pumping efforts are also often undervalued, with detrimental consequences. Perhaps the most difficult problems to overcome in designing pumping schemes, however, are posed by demographic constraints. Denial of property access, vandalism and the unpredictability of nearby water supply and irrigation pumpage tend to wreak havoc with the best of pumping strategies.  相似文献   

9.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   

10.
Magnetic resonance sounding applied to aquifer characterization   总被引:3,自引:0,他引:3  
Magnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling. An example of the practical application of MRS combined with two-dimensional electrical imaging, in the Kerbernez and Kerien catchments area of France, demonstrates the efficiency of the technique.  相似文献   

11.
Cox MH  Su GW  Constantz J 《Ground water》2007,45(2):187-195
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system.  相似文献   

12.
Water levels and water quality of open borehole wells in fractured bedrock are flow-weighted averages that are a function of the hydraulic heads and transmissivities of water contributing fractures, properties that are rarely known. Without such knowledge using water levels and water quality data from fractured bedrock wells to assess groundwater flow and contaminant conditions can be highly misleading. This study demonstrates a cost-effective single packer method to determine the hydraulic heads and transmissivities of water contributing fracture zones in crystalline bedrock wells. The method entails inflating a pipe plug to isolate sections of an open borehole at different depths and monitoring changes in the water level with time. At each depth, the change in water level with time was used to determine the sum of fracture transmissivities above the packer and then to solve for individual fracture transmissivity. Steady-state wellbore heads along with the transmissivities were used to determine individual fracture heads using the weighted average head equation. The method was tested in five wells in crystalline bedrock located at the University of Connecticut in Storrs. The single packer head and transmissivity results were found to agree closely with those determined using conventional logging methods and the dissolved oxygen alteration method. The method appears to be a simple and cost-effective alternative in obtaining important information on flow conditions in fractured crystalline bedrock wells.  相似文献   

13.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

14.
The vertical transport of contaminants from source areas is employed in many risk assessment models and screening tools in order to estimate the contaminant mass discharge (CMD) into underlying aquifers. The key parameters for estimating CMD are the contaminant source area and concentration, and the vertical water flux, the latter of which depends on the vertical hydraulic conductivity and the vertical hydraulic gradient in the subsurface. This study focuses on advancing the use of the combined membrane interface probe hydraulic profiling tool (MiHPT) to investigate the vertical hydraulic gradient across a clay till overlying a sandy aquifer at a contaminated site in Denmark. Only the HPT is necessary for the estimate of vertical hydraulic gradient. The hydraulic head, clay till thickness, and resulting vertical hydraulic gradients found using the MiHPT compared well with observations from nearby nested wells. The parameter with the largest discrepancy was the thickness of the clay till. The advantage of the MiHPT is its relatively quick depth discrete access to information regarding subsurface permeability, vertical hydraulic gradients and contaminant distribution across a site. In this case study, performance of additional dissipationtests during the HPT log to acquire determination of the vertical hydraulic gradient increased the cost by 3% compared to standard HPT logs.  相似文献   

15.
Temperature is often used to infer the effect of land use and climate conditions on aquifers. Reliable data are needed to examine the temperature behaviour in the subsurface; thus, the use of robust acquisition techniques is unavoidable. Three temperature measurement techniques were applied to assess the sources of bias that could occur during temperature logging in a shallow Quaternary coastal aquifer in Ferrara (Northern Italy). Open borehole temperature logging, multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground and multilevel sampling straddle packers isolated temperature measurements via an in‐well level logger (MLS‐IW) were compared for several coastal monitoring wells to gain insights on the limitations of each technique. Results show that the source of bias between the three applied techniques are different: (i) the open borehole temperature logging method tends to record heat convection through the open borehole and is not representative of the aquifer temperature distribution; (ii) the multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground method is swayed by the air temperature and the heating of the submersible pump used to lift groundwater above ground; and (iii) the MLS‐IW provides the most reliable vertical thermal profiling both in summer and winter, because groundwater temperature is directly measured at the selected monitoring depth. The implementation of a 1D flow model demonstrates that if precise temperature profiles are needed to infer the influence that land use and climate changes have on groundwater, the MLS‐IW method is a reliable method that could be applied to existing monitoring wells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
During a 3 month recharge experiment related to conjunctive use of water resources, 1.5 × 106 T of imported water were percolated through a pond of 128 m by 128 m in the San Jacinto basin. The infiltration rates, which declined with time, averaged 1.9 m day−1, equivalent to four times the lowest laboratory-measured hydraulic conductivity of the fluvial deposits. Ponding altered the unimodal grain-size distribution at the ground surface to types without a dominant mode, but this redistribution did not always lead to reduction in conductivities, which varied over at least three orders of magnitude. The water table 80 m downstream from the ponding edge began to rise slowly 1 month after the start of ponding; it leveled off at 8 m above the pre-recharge water table depth of 75 m and did not recede 2 months after termination of ponding. Water levels in wells bottomed in the original vadose zone suggested that an inverted water table migrated downward to meet the rising water table. Minor, local perching occurred at 14 m depth, as indicated by the presence of moist ground near one monitoring well and by hydraulic responses during a 20 day intermission in percolation. As it percolated through the sediments, the imported northern California water gained Ca but lost Mg, so that the Mg/Ca ratio resembled that of local ground water. Such cation exchange has also been demonstrated by leaching experiments in the laboratory. However, the characteristics of the original source waters appear to be retained by D/H isotope ratios and Cl concentrations, as well as cross-plots of SO4 vs. Cl and B vs. Cl. Such unreactive tracers could serve to monitor transport and mixing of the chemically diverse water used in future recharge programs in the San Jacinto basin.  相似文献   

17.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

18.
A rigorous and practical approach for interpretation of impeller flow log data to determine vertical variations in hydraulic conductivity is presented and applied to two well logs from a Chalk aquifer in England. Impeller flow logging involves measuring vertical flow speed in a pumped well and using changes in flow with depth to infer the locations and magnitudes of inflows into the well. However, the measured flow logs are typically noisy, which leads to spurious hydraulic conductivity values where simplistic interpretation approaches are applied. In this study, a new method for interpretation is presented, which first defines a series of physical models for hydraulic conductivity variation with depth and then fits the models to the data, using a regression technique. Some of the models will be rejected as they are physically unrealistic. The best model is then selected from the remaining models using a maximum likelihood approach. This balances model complexity against fit, for example, using Akaike's Information Criterion.  相似文献   

19.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

20.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号