首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   

2.
The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si can readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch experiment series designed as function of time (0-504 h) and initial concentration (ic) of Si in solution (0.21-1.80 mM), at 20 °C, constant pH (5.5) and ionic strength (1 mM). At various contact times, the δ29Si vs. NBS28 compositions were determined in selected solutions (ic = 0.64 and 1.06 mM Si) by MC-ICP-MS in dry plasma mode with external Mg doping with an average precision of ±0.08‰ (±2σSEM). Per oxide mass, ferrihydrite (74-86% of initial Si loading) adsorbed more Si than goethite (37-69%) after 504 h of contact over the range of initial Si concentration 0.42-1.80 mM. Measured against its initial composition (δ29Si = +0.01 ± 0.04‰ (±2σSD)), the remaining solution was systematically enriched in 29Si, reaching maximum δ29Si values of +0.70 ± 0.07‰ for ferrihydrite and +0.50 ± 0.08‰ for goethite for ic 1.06 mM. The progressive 29Si enrichment of the solution fitted better a Rayleigh distillation path than a steady state model. The fractionation factor 29ε (±1σSD) was estimated at −0.54 ± 0.03‰ for ferrihydrite and −0.81 ± 0.12‰ for goethite. Our data imply that the sorption of onto synthetic iron oxides produced a distinct Si-isotopic fractionation for the two types of oxide but in the same order than that generated by Si uptake by plants and diatoms. They further suggest that the concentration of light Si isotopes in the clay fraction of soils is partly due to sorption onto secondary clay-sized iron oxides.  相似文献   

3.
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (δ44/40Ca = −2.01 ± 0.15‰) but are different from hydrothermal and cold seep barite samples (δ44/40Ca = −4.13 to −2.72‰). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, Δ44/40Ca = −3.42 to −2.40‰. Temperature, saturation state, , and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by −9‰ at 0 °C and −8‰ at 25 °C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower δ44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals.  相似文献   

4.
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on δ18O and δ34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying δ18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ∼2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ∼2.7. The δ34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (∼−0.7‰) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (ε18OSO4-H2O) of ∼3.5‰ was determined for the anaerobic (biological and abiotic) experiments. This measured value was then used to estimate the oxygen isotope fractionation effects between sulfate and dissolved oxygen in the aerobic experiments which were −10.0‰, −10.8‰, and −9.8‰ for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between δ18OSO4 values in the biological and abiotic experiments, it is suggested that δ18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions.  相似文献   

5.
In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/24Mg ratio has a range of 2‰ and the 44Ca/42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (−1.31‰) and (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated values in rivers and rock reported so far demonstrating that both riverine and bedrock values may show greater variability than previously thought.Although rivers draining TSS limestone have the lowest values at −1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is −1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/24Mg ratios between silicate rock and solute Mg reflects the 26Mg/24Mg isotopic fractionation factor () between silicate and dissolved Mg during incongruent silicate weathering. The value of of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca is overwhelmingly derived from carbonate weathering. The average value in HHCS rivers is within uncertainty of silicate rock at 0.39‰. The widespread hot springs of the High Himalaya have an average δ26Mg value of −0.46‰ and an average value of 0.5‰, distinct from riverine values for δ26Mg but similar to riverine values. Although rivers draining each major rock type have and δ26Mg values in part inherited from bedrock, there is no correlation with proxies for carbonate or silicate lithology such as Na/Ca ratios, suggesting that Ca and Mg are in part recycled. However, in spite of the vast contrast in vegetation density between the arid Tibetan Plateau and the tropical Lesser Himalaya, the isotopic fractionation factor for Ca and Mg between solute and rocks are not systematically different suggesting that vegetation may only recycle a small amount of Ca and Mg in these catchments.The discrepancy between solute and solid Ca and Mg isotope ratios in these rivers from diverse weathering environments highlight our lack of understanding concerning the origin and subsequent path of Ca and Mg, bound as minerals in rock, and released as cations in rivers. The fractionation of Ca and Mg isotope ratios may prove useful for tracing mechanisms of chemical alteration. Ca isotope ratios of solute riverine Ca show a greater variability than previously acknowledged. The variability of Ca isotope ratios in modern rivers will need to be better quantified and accounted for in future models of global Ca cycling, if past variations in oceanic Ca isotope ratios are to be of use in constraining the past carbon cycle.  相似文献   

6.
In high-temperature volcanic fumaroles (>400 °C), the isotopic composition of molecular hydrogen (H2) reaches equilibrium with that of the fumarolic H2O. In this study, we used this hydrogen isotope exchange equilibrium of fumarolic H2 as a tracer for the remote temperature at volcanic fumaroles. In this remote sensing, we deduced the hydrogen isotopic composition (δD value) of fumarolic H2 from those in the volcanic plume. To ascertain that we can estimate the δD value of fumarolic H2 from those in a volcanic plume, we estimated the values in three fumaroles with outlet temperatures of 630 °C (Tarumae), 203 °C (Kuju), and 107 °C (E-san). For this we measured the concentration and δD value of H2 in each volcanic plume, along with those determined directly at each fumarole. The average and maximum mixing ratios of fumarolic H2 within a plume’s total H2 were 97% and 99% (at Tarumae), 89% and 96% (at Kuju), and 97% and 99% (at E-san). We found a linear relationship between the depletion in the δD values of H2, with the reciprocal of H2 concentration. Furthermore, the estimated end-member δD value for each H2-enriched component (−260 ± 30‰ vs. VSMOW in Tarumae, −509 ± 23‰ in Kuju, and −437 ± 14‰ in E-san) coincided well with those observed at each fumarole (−247.0 ± 0.6‰ in Tarumae, −527.7 ± 10.1‰ in Kuju, and −432.1 ± 2.5‰ in E-san). Moreover, the calculated isotopic temperatures at the fumaroles agreed to within 20 °C with the observed outlet temperature at Tarumae and Kuju. We deduced that the δD value of the fumarolic H2 was quenched within the volcanic plume. This enabled us to remotely estimate these in the fumarole, and thus the outlet temperature of fumaroles, at least for those having the outlet temperatures more than 400 °C. By applying this methodology to the volcanic plume emitted from the Crater 1 of Mt. Naka-dake (the volcano Aso) where direct measurement on fumaroles was impractical, we estimated that the δD value of the fumarolic H2 to be −172 ± 16‰ and the outlet temperature to be 868 ± 97 °C. The remote temperature sensing using hydrogen isotopes developed in this study is widely applicable to many volcanic systems.  相似文献   

7.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

8.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

9.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

10.
Dissolved inorganic nitrogen, largely in reduced form (), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.  相似文献   

11.
An integrated sulfur isotope model for Namibian shelf sediments   总被引:2,自引:0,他引:2  
In this study the sulfur cycle in the organic-rich mud belt underlying the highly productive upwelling waters of the Namibian shelf is quantified using a 1D reaction-transport model. The model calculates vertical concentration and reaction rate profiles in the top 500 cm of sediment which are compared to a comprehensive dataset which includes carbon, sulfur, nitrogen and iron compounds as well as sulfate reduction (SR) rates and stable sulfur isotopes (32S, 34S). The sulfur dynamics in the well-mixed surface sediments are strongly influenced by the activity of the large sulfur bacteria Thiomargaritanamibiensis which oxidize sulfide (H2S) to sulfate () using sea water nitrate () as the terminal electron acceptor. Microbial sulfide oxidation (SOx) is highly efficient, and the model predicts intense cycling between and H2S driven by coupled SR and SOx at rates exceeding 6.0 mol S m−2 y−1. More than 96% of the SR is supported by SOx, and only 2-3% of the pool diffuses directly into the sediment from the sea water. A fraction of the produced by Thiomargarita is drawn down deeper into the sediment where it is used to oxidize methane anaerobically, thus preventing high methane concentrations close to the sediment surface. Only a small fraction of total H2S production is trapped as sedimentary sulfide, mainly pyrite (FeS2) and organic sulfur (Sorg) (∼0.3 wt.%), with a sulfur burial efficiency which is amongst the lowest values reported for marine sediments (<1%). Yet, despite intense SR, FeS2 and Sorg show an isotope composition of ∼5 ‰ at 500 cm depth. These heavy values were simulated by assuming that a fraction of the solid phase sulfur exchanges isotopes with the dissolved sulfide pool. An enrichment in H2S of 34S towards the sediment-water interface suggests that Thiomargarita preferentially remove H232S from the pore water. A fractionation of 20-30‰ was estimated for SOx (εSOx) with the model, along with a maximum fractionation for SR (εSR-max) of 100‰. These values are far higher than previous laboratory-based estimates for these processes. Mass balance calculations indicate negligible disproportionation of autochthonous elemental sulfur; an explanation routinely cited in the literature to account for the large fractionations in SR. Instead, the model indicates that repeated multi-stepped sulfide oxidation and intracellular disproportionation by Thiomargarita could, in principle, allow the measured isotope data to be simulated using much lower fractionations for εSOx (5‰) and εSR (78‰).  相似文献   

12.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

13.
Anaerobic incubations of upland and wetland temperate forest soils from the same watershed were conducted under different moisture and temperature conditions. Rates of nitrous oxide (N2O) production by denitrification of nitrate () and the stable isotopic composition of the N2O (δ15N, δ18O) were measured. In all soils, N2O production increased with elevated temperature and soil moisture. At each temperature and moisture level, the rate of N2O production in the wetland soil was greater than in the upland soil. The 15N isotope effect (ε) (product − substrate) ranged from −20‰ to −29‰. These results are consistent with other published estimates of 15N fractionation from both single species culture experiments and soil incubation studies from different ecosystems.A series of incubations were conducted with 18O-enriched water (H2O) to determine if significant oxygen exchange (O-exchange) occurred between H2O and N2O precursors during denitrification. The exchange of H2O-O with nitrite () and/or nitric oxide (NO) oxygen has been documented in single organism culture studies but has not been demonstrated in soils prior to this study. The fraction of N2O-O derived from H2O-O was confined to a strikingly narrow range that differed between soil types. H2O-O incorporation into N2O produced from upland and wetland soils was 86% to 94% and 64% to 70%, respectively. Neither the temperature, soil moisture, nor the rate of N2O production influenced the magnitude of O-exchange. With the exception of one treatment, the net 18O isotope effect (εnet) (product-substrate) ranged from +37‰ to +43‰.Most previous studies that have reported 18O isotope effects for denitrification of to N2O have failed to account for the effect of oxygen exchange with H2O. When high amounts of O-exchange occur after fractionation during reductive O-loss, the 18O-enrichment is effectively lost or diminished and δ18O-N2O values will be largely dictated by δ18O-H2O values and subsequent fractionation. The process and extent of O-exchange, combined with the magnitude of oxygen isotope fractionation at each reduction step, appear to be the dominant controls on the observed oxygen isotope effect. In these experiments, significant oxygen isotope fractionation was observed to occur after the majority of water O-exchange. Due to the importance of O-exchange, the net oxygen isotope effect for N2O production in soils can only be determined using δ18O-H2O addition experiments with δ18O-H2O close to natural abundance.The results of this study support the continued use of δ15N-N2O analysis to fingerprint N2O produced from the denitrification of . The utilization of 18O/16O ratios of N2O to study N2O production pathways in soil environments is complicated by oxygen exchange with water, which is not usually quantified in field studies. The oxygen isotope fractionation observed in this study was confined to a narrow range, and there was a clear difference in water O-exchange between soil types regardless of temperature, soil moisture, and N2O production rate. This suggests that 18O/16O ratios of N2O may be useful in characterizing the actively denitrifying microbial community.  相似文献   

14.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   

15.
16.
17.
Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ∼1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ∼0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ34S, δ18O of pore water indicate close coupling of anaerobic C, S, and Fe cycles. δ18O- can increase by 2-3‰ during anaerobic recycling without net change in δ34S-, demonstrating reduction coupled to complete anaerobic reoxidation to and a δ18O- reduction + reoxidation fractionation factor?12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe2+ (∼1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ18O- equivalent in mass to?25% of the annual riverine delivery of to the global ocean. Unsteady conditions result in preservation of unusually heavy δ34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits. In contrast, bioturbated facies adjacent to physically reworked regions accumulate isotopically light S (δ34S to −20‰) in otherwise similar decomposition regimes. The isotopic patterns of both physically and biologically reworked regions can be simulated with simple diagenetic models. Heavy S isotopic signatures are largely a consequence of unsteady diffusion and progressive anaerobic burndown into underlying deposits, whereas isotopically depleted bioturbated deposits predominantly reflect biogenic diffusive scaling and isotopic distillation/diffusive pumping associated with reoxidation in burrow walls immediately adjacent to reduced zones. The S isotopic transition from unsteady physically controlled regions of the Amazon delta moving laterally into bioturbated facies mimics the transition of S isotopic patterns temporally in the geologic record during the rise of bioturbation. No special role for S disproportionation is required to explain these differences. The potential role of unsteady, suboxic diagenesis and dynamic reworking of sediments has been largely ignored in models of the evolution of surficial elemental cycling and interpretations of the geologic record.  相似文献   

18.
19.
The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 3‰ relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.3‰. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens’ δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope ‘vital effects’ in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation.  相似文献   

20.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号