首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The δ37Cl values of volcanic fumarole gases and bubbling springs were measured from the Central American and the Kurile arcs. Low temperature gas samples from the Central American arc have δ37Cl values generally between −2 and 2‰, whereas high-temperature fumaroles (>100 °C) range from 4 to 12‰, with several outliers. This is in contrast to the high-temperature fumaroles from the Kurile island Kudryavy which have slightly positive δ37Cl values, averaging 0.8‰ (±0.6, 1σ), and from our previous work on Izu and Mariana arc samples in which the δ37Cl values of fumarole and ash samples are similar to each other and negative. Assuming that the source for the high-T Central American fumaroles has typical subduction δ37Cl values (−2.5 to 1‰), then there must be a large Cl isotope fractionation in the near-surface fumarolic system. The most likely fractionation mechanism for the high δ37Cl values is between Claq − HCl(g), but published theoretical fractionation for this pair is only ∼1.5‰, insufficient to explain the large range of values observed in the fumaroles. Three experiments were undertaken in order to identify a process that could cause the wide range of δ37Cl values observed in the high-temperature fumaroles. Results are the following: (1) A sub-boiling equilibration experiment between aqueous chloride and HCl gas had , in agreement with the theoretical calculations. (2) Evaporation of HCl(g) from hydrochloric acid at room temperature had fractionation in the opposite sense, with a . (3) A ‘synthetic fumarole’ gave large positive fractionations up to 9‰, with 37Cl strongly partitioned into the vapor phase. The ‘fumarole’ experiments were made by bubbling dry air through boiling hydrochloric acid in an Erlenmeyer flask, and collecting the evolved HCl(g) in a second ‘downstream’ flask filled with distilled water. This extreme enrichment is likely due to a distillation process in which 37Cl-enriched HCl(g) is stripped from the hydrochloric acid followed by a significant fraction of the light HCl(g) redissolving into the constantly condensing water vapor on the walls of the first flask. This distillation experiment creates a Cl isotope fractionation that is the same order of magnitude as observed in the high-temperature fumaroles in Central America. These results suggest that there must be a H2O liquid-vapor region in the sub-surface fumarole conduit where light Cl is stripped from the HCl gas as it passes through the fumarole. Similar 37Cl enrichments are expected in fossil epithermal boiling systems.  相似文献   

2.
The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 °C was inferred by methane-based chemical-isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200-240 °C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 °C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (δD ∼ −20‰, δ18O ∼10‰) and a CO2-rich composition (XCO20.4) has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to ∼0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system.  相似文献   

3.
Goethite (Ax-2) from Axel Heiberg Island (∼80°N) on the margin of the Arctic Ocean is the dominant mineral in a sample of “petrified” Eocene wood, but U, Th, and He measurements suggest that the goethite (α-FeOOH) crystallized in the latest Miocene/Pliocene (ca. 5.5 to 2.8 Ma). Measured δD and δ18O values of Ax-2 are −221 (±6)‰ and −9.6 (±0.5)‰, respectively. The inferred δD and δ18O values of the ancient water were about −139‰ and −18.6‰, respectively, with a calculated temperature of crystallization of 3 (±5)°C, which compares with the modern summer (J-J-A) temperature of 3 °C and contrasts with a modern MAT of −19 °C. Published results from various biological proxies on nearby Ellesmere Island indicate a Pliocene (∼4 Ma) MAT of either −6 or −0.4 °C and corresponding seasonal amplitudes of about 18 or 13 °C. A conductive heat flow model suggests that a temperature of 3 °C could represent goethite crystallization at depths of ∼100-200 cm (for MAT = −6 °C) or ∼250-450 cm (for MAT = −0.4 °C) over seasonally restricted intervals of time.The δ18O value of the Ax-2 water (−18.6‰) is more positive than the modern J-J-A precipitation (−22‰). In combination, the paleotemperatures and δ18O values of ancient waters (from Ax-2 and published results from three Eocene or Pliocene proxy sites on Axel Heiberg and Ellesmere Islands) are consistent with a warm season bias in those isotopic proxies. The results are also consistent with higher proportions of J-J-A precipitation in the annual total. If so, this emphasizes the importance of seasonality at high latitudes even in times of warmer global climates, and suggests that the Arctic hydrologic cycle, as expressed in the seasonal distribution and isotopic composition of precipitation (perhaps modified by a warmer Arctic Ocean), differed from modern.The δ13C value of the Fe(CO3)OH component in the Ax-2 goethite is +6.6‰, which is much more positive than expected if crystallizing goethite incorporated CO2 derived primarily from oxidation of relict Eocene wood with δ13C values of about −24‰. This apparent paradox may be resolved if the goethite is a product of oxidation of 13C-rich siderite, which had previously replaced wood in an Eocene methanogenic burial environment. Thus, the goethite retains a carbon isotope “memory” of a diagenetic Eocene event, but a δD and δ18O record of the latest Miocene/Pliocene Arctic climate.  相似文献   

4.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

5.
An Early Eocene Oxisol in the Ione Formation of California formed in a coastal continental weathering environment at a paleolatitude of ∼38°N. The dominant minerals in the Oxisol are goethite, quartz, and kaolinite. Material balance calculations were applied to new measurements of chemical composition, D/H, and 18O/16O ratios of Oxisol samples to determine the δD (−150 ± 3‰) and δ18O (−2.4 ± 0.3‰) values of the goethite (α-FeOOH). These data, in combination with the global meteoric water line (MWL), yielded an isotopic temperature of 21(±4) °C. The nominal value of 21 °C contrasts with the modern mean annual temperature (MAT) of 16 °C in that area. The warmer temperature is consistent with formation of the goethite during the Early Eocene climatic optimum. The isotopic composition of the goethite and a temperature of 21 °C imply ancient water with a δD value of −61(±4)‰ and a δ18O value of −8.9(±0.5)‰. This Early Eocene δ18O (or δD) value is more negative than values in the range of isotopic scatter observed for modern global precipitation at sites with a MAT of 21 °C.At times of warm global climates, the location of a near-surface atmospheric isotherm would generally shift relative to its location under modern climatic conditions. A simple Rayleigh-type condensation model indicates that, if one “follows the isotherm”, the associated scatter in δD and δ18O of precipitation in very warm global climates should shift (for a given isotherm) to more negative values that may be detectable in proxy records. The isotopic results from the goethite of the Early Eocene Oxisol appear to add to evidence in support of this idea.  相似文献   

6.
Silicon isotopes in dissolved silicic acid were measured in the upper four kilometers between 4°N and 3°S latitude at 110°W longitude in the eastern Equatorial Pacific. Silicon isotopes became progressively heavier with silicic acid depletion of surface water as expected from biological fractionation. The value of ε estimated by applying a steady-state isotope fractionation model to data from all stations between 4°N and 3°S was −0.77 ± 0.12‰ (std. err.). When the analysis was restricted to those stations whose temperature and salinity profiles indicated that they were directly influenced by upwelling of the Equatorial Undercurrent (EUC), the resulting value of ε was −1.08 ± 0.27‰ (std. err.) similar to the value established in culture studies (−1.1‰). When the non steady state Rayleigh model was applied to the same restricted data set the resulting value of ε was significantly more positive, −0.61 ± 0.16‰ (std. err.). To the extent that the equatorial system approximates a steady state these results support a value of −1.1‰ for the fractionation factor for isotopes of Si in the sea. Without the assumption of steady state the value of ε can only be constrained to be between −0.6 and −1.1‰. Silicic acid in Equatorial Pacific Deep Water below 2000 m had a near constant δ30Si of +1.32 ± 0.05‰. That value is significantly more positive than obtained for North Pacific Deep Water at similar depths at stations to the northwest of our study area (0.9-1.0‰) and it is slightly less positive than new measures of the δ30Si of silicic acid from the silicic acid plume centered over the Cascadia basin in the Northeast Pacific (Si(OH)4 > 180  μM, δ30Si = +1.46 ± 0.12‰ (SD, n = 4). We show that the data from the equator and Cascadia basin fit a general trend of increasing δ30Si(OH)4 with increasing silicic acid concentration in the deep sea, but that the isotope values from the Northeast Pacific are anomalously light. The observed level of variation in the silicon isotope composition of deep waters from this single ocean basin is considerably larger than that predicted by current models based on fractionation during opal formation with no isotope effect during dissolution. Confirmation of such high variability in deep water δ30Si(OH)4 within individual ocean basins will require reassessment of the mechanisms controlling the distribution of isotopes of silicon in the sea.  相似文献   

7.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

8.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

9.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

10.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

11.
Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51–27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from − 14.5 to − 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4–δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51–27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.  相似文献   

12.
Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and n-butane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples from two seep areas were each slurried with sea water and treated with C1, C2, C3 or C4, or with mixtures of all four gases. Triplicate samples were incubated aerobically at 15 °C, and the stable isotope composition and headspace levels of C1-C4 were monitored over the course of the experiment. Oxidation was observed for all C1-C4 gases, with an apparent preference for C3 and C4 over C1 and C2 in the mixed-gas treatments. Fractionation factors were calculated using a Rayleigh model by comparing the δ13C and δD of the residual C1-C4 gases to their headspace levels. Carbon isotope fractionation factors (reported in ε or (α-1) × 1000 notation) were consistent between seep areas and were −26.5‰ ± 3.9 for C1, −8.0‰ ± 1.7 for C2, −4.8‰ ± 0.9 for C3 and −2.9‰ ± 0.9 for C4. Fractionation factors determined from mixed gas incubations were similar to those determined from individual gas incubations, though greater variability was observed during C1 consumption. In the case of C1 and C3 consumption, carbon isotope fractionation appears to decrease as substrate becomes limiting. Hydrogen isotope fractionation factors determined from the two seep areas differed for C1 oxidation but were similar for C2 and C3. Hydrogen isotope fractionation factors ranged from −319.9‰ to −156.4‰ for C1 incubations, and averaged −61.9‰ ± 8.3 for C2 incubations and −15.1‰ ± 1.9 for C3 incubations. The fractionation factors presented here may be applied to estimate the extent of C1-C4 oxidation in natural gas samples, and should prove useful in further studying the microbial oxidation of these compounds in the natural environment.  相似文献   

13.
There is considerable debate about the mode and age of formation of large (up to ∼200 m long) hematite and goethite ironstone bodies within the 3.2 to 3.5 Ga Barberton greenstone belt. We examined oxygen and hydrogen isotopes and Rare Earth Element (REE) concentrations of goethite and hematite components of the ironstones to determine whether these deposits reflect formation from sea-floor vents in the Archean ocean or from recent surface and shallow subsurface spring systems. Goethite δ18O values range from −0.7 to +1.0‰ and δD from −125 to −146‰, which is consistent with formation from modern meteoric waters at 20 to 25 °C. Hematite δ18O values range from −0.7 to −2.0‰, which is consistent with formation at low to moderate temperatures (40-55 °C) from modern meteoric water. REE in the goethite and hematite are derived from the weathering of local sideritic ironstones, silicified ultramafic rocks, sideritic black cherts, and local felsic volcanic rocks, falling along a mixing line between the Eu/Eu* and shale-normalized HREEAvg/LREEAvg values for the associated silicified ultramafic rocks and felsic volcanic rocks. Contrasting positive Ce/Ce* of 1.3 to 3.5 in hematite and negative Ce/Ce* of 0.2 to 0.9 in goethite provides evidence of oxidative scavenging of Ce on hematite surfaces during mineral precipitation. These isotopic and REE data, taken together, suggest that hematite and goethite ironstone pods formed from relatively recent meteoric waters in shallow springs and/or subsurface warm springs.  相似文献   

14.
Although commonly utilized in continental geothermal work, the water-hydrogen and methane-hydrogen isotope geothermometers have been neglected in hydrothermal studies. Here we report δD-CH4 and δD-H2 values from high-temperature, black smoker-type hydrothermal vents and low-temperature carbonate-hosted samples from the recently discovered Lost City Hydrothermal Field. Methane deuterium content is uniform across the dataset at − 120 ± 12‰. Hydrogen δD values vary from − 420‰ to − 330‰ at high-temperature vents to − 700‰ to − 600‰ at Lost City. The application of several geothermometer equations to a suite of hydrothermal vent volatile samples reveals that predicted temperatures are similar to measured vent temperatures at high-temperature vents, and 20-60 °C higher than those measured at the Lost City vents. We conclude that the overestimation of temperature at Lost City reflects 1) that methane and hydrogen are produced by serpentinization at > 110 °C, and 2) that isotopic equilibrium at temperatures < 70 °C is mediated by microbial sulfate reduction. The successful application of hydrogen isotope geothermometers to low-temperature Lost City hydrothermal samples encourages its employment with low-temperature diffuse hydrothermal fluids.  相似文献   

15.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

16.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

17.
Understanding past climate change is critical to the interpretation of earth history. Even though relative temperature change has been readily assessed in the marine record, it has been more difficult in the terrestrial record due to restricted taxonomic distribution and isotopic fractionation. This problem could be overcome by the use of multiple paleoproxies. Therefore, the δ18O isotopic composition of five paleoproxies (rodent tooth enamel, δ18OPhosphate = +17.7 ± 2.0‰ n = 74 (VSMOW); fish scale ganoine δ18OPhosphate = +19.7 ± 0.7‰ n = 20 (VSMOW); gastropod shell δ18OCalcite = −1.7 ± 1.3‰ n = 50 (VPDB); charophyte gyrogonite δ18OCalcite = −2.4 ± 0.5‰ n = 20 (VPDB); fish otolith δ18OAragonite = δ18O = −3.6 ± 0.6‰ n = 20 (VPDB)) from the Late Eocene (Priabonian) Osborne Member (Headon Hill Formation, Solent Group, Hampshire Basin, UK) were determined. Because diagenetic alteration was shown to be minimal the phosphate oxygen component of rodent tooth enamel (as opposed to enamel carbonate oxygen) was used to calculate an initial δ18OLocal water value of 0.0 ± 3.4‰. However, a skewed distribution, most likely as a result of the ingestion of evaporating water, necessitated the calculation of a corrected δ18OLocal water value of −1.3 ± 1.7‰ (n = 62). This δ18OLocal water value corresponds to an approximate mean annual temperature of 18 ± 1°C. Four other mean paleotemperatures can also be calculated by combining the δ18OLocal water value with four independent freshwater paleoproxies. The calculated paleotemperature using the fish scale thermometry equations most likely represents the mean temperature (21 ± 2°C) of the entire length of the growing season. This should be concordant with the paleotemperature calculated using the Lymnaea shell thermometry equation (23 ± 2°C). The lack of concordance is interpreted to be the result of diagenetic alteration of the originally aragonitic Lymnaea shell to calcite. The mean paleotemperature calculated using the charophyte gyrogonite thermometry equation (21 ± 2°C), on the other hand, most likely represents the mean temperature of a single month toward the end of the growing season. The fish otolith mean paleotemperature (28 ± 2°C) most likely represents the mean temperature of the warmest months of the growing season. An approximate mean annual temperature of 18 ± 1°C, in addition to a mean growing season paleotemperature of 21 ± 2°C (using fish scale only) with a warmest month temperature of 28 ± 2°C, and high associated standard deviations suggest that a subtropical to warm temperate seasonal climate existed during the deposition of the Late Eocene Osborne Member.  相似文献   

18.
Molybdenum (Mo) isotope studies in black shales can provide information about the redox evolution of the Earth’s oceans, provided the isotopic consequences of Mo burial into its major sinks are well understood. Previous applications of the Mo isotope paleo-ocean redox proxy assumed quantitative scavenging of Mo when buried into sulfidic sediments. This paper contains the first complete suite of Mo isotope fractionation observations in a sulfidic water column and sediment system, the meromictic Lake Cadagno, Switzerland, a small alpine lake with a pronounced oxygen-sulfide transition reaching up to H2S ∼ 200 μM in the bottom waters (or about 300 μM total sulfide: ΣS2− = H2S + HS + S2−). We find that Mo behaves conservatively in the oxic zone and non-conservatively in the sulfidic zone, where dissolved Mo concentrations decrease from 14 nM to 2-8 nM across this transition. Dissolved Mo in the upper oxic waters has a δ98Mooxic = 0.9 ± 0.1‰, which matches that of the riverine input, δ98Moriver = 0.9 ± 0.1‰. In the deeper sulfidic waters, a subaquatic source delivers Mo at 1.55 ± 0.1‰, but the dissolved Mo is even heavier at δ98Mosulfidic = 1.8‰. Sediment traps in the sulfidic zone of the lake collect particles increasingly enriched in Mo with depth, with δ98Mo values significantly fractionated at −0.8‰ to −1.2‰ both near the chemocline and in the deepest trap. Suspended particulates in the sulfidic waters carry lighter Mo than the ambient dissolved Mo pool by ∼0.3-1.5‰. Sedimentary Mo concentrations correlate with total organic carbon and yield Mo levels which are two orders of magnitude higher than typical crustal values found in rocks from the catchment area. Solid-phase Mo in the sediment shows a slightly positive δ98Mo trend with depth, from δ98Mo = 1.2‰ to 1.4‰ while the pore waters show dramatic enrichments of Mo (>2000 nM) with a relatively light isotope signature of δ98Mo = 0.9-1.0‰.These data are explained if Mo is converted to particle-reactive oxythiomolybdates in the sulfidic waters and is fractionated during removal from solution onto particles. Isotope fractionation is expressed in the water column, despite the high sulfide concentrations, because the rate of Mo removal is fast compared to the slow reaction kinetics of thiomolybdate formation. However, elemental and isotopic mass balances show that Mo is indeed quantitatively removed to the lake sediments and thus the isotopic composition of the sediments reflects sources to the sulfidic water. This efficient Mo drawdown is expected to occur in settings where H2S is very much in excess over Mo or in a restricted setting where the water renewal rate is slow compared to the Mo burial rate. We present a model for the Mo isotope fractionation in sulfidic systems associated with the slow reaction kinetics and conclude that quantitative removal will occur in highly sulfidic and restricted marine systems.  相似文献   

19.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

20.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号