首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lucia Chica channel system is an avulsion belt with four adjacent channels that progressively avulsed to the north‐east from a single, upslope feeder channel. Avulsion occurred from underfilled channels, leaving open channels that were reactivated by flows stripped from younger, adjacent channels. Differences in relief (height from channel thalweg to levée crest), sinuosity and levée stratigraphy between adjacent channels correspond to relative channel age, and indicate a change in channel morphology and architecture with time. Potential triggers for the change over time include differences in gradient, flow behaviour and characteristics, and channel evolution. Gradient does not appear to be a major control on channel formation and avulsion because adjacent channels formed on the same gradient. Based on available ultra‐high‐resolution remote imaging obtained with an Autonomous Underwater Vehicle, differences in adjacent channel morphology are interpreted to be primarily a result of differences in channel maturity. The interpreted sequence of channel maturity involves erosional channel inception through scouring and incipient channels (defined by linear trains of scours) prior to development of continuous thalwegs. Channel narrowing, formation and growth of levées, increasing channel relief and development of sinuosity occurred as channels evolved. The evolutionary sequence interpreted from the high‐resolution Lucia Chica dataset provides a unique perspective on intrinsic controls of architecture for single channel elements. In addition to helping bridge the gap between outcrop and industry‐standard reflection‐seismic data resolutions and scopes, interpretations in this study also expose potential problems with hierarchical classifications in three‐dimensional imaging of distributary systems, and provide potentially important analogues for evolutionary morphologies not resolved in other deep‐water channel systems.  相似文献   

2.
深水水道沉积构型及其演化一直是沉积学界研究的热点。基于Rio Muni盆地深水区470 km2高分辨率三维地震数据,在精细地震解释的基础上,对研究区发育的深水水道的沉积构型、演化进行探讨。主要取得4点认识:(1)深水水道的弯曲度主要受控于物源供给和海底坡度,研究区发育弯曲水道、顺直水道2类深水水道;(2)起源于陆架边缘的深水水道,物源供给相对充分,弯曲度高,其剖面往往不对称,水道壁发育滑塌或阶地,垂向演化具有侧向迁移特征,发育废弃水道;(3)而起源于中上陆坡的深水水道,其弯曲度低,剖面具有U形特征,水道壁光滑无滑塌或阶地, 主要以垂向加积为主。由于物源供给不足,顺直水道逐渐被深海泥质披覆沉积充填;(4)同一条深水水道,由上陆坡向下陆坡,随着海底坡度的降低,其弯曲度呈增大趋势。  相似文献   

3.
天然河流中一些下切性河流具有独特的河床演变规律,如不规则形式的纵剖面等。通过现场调查、资料统计和GIS分析等方式,探讨了河道自然下切过程中河床演变相关机理及其对河流纵剖面的影响,揭示了其中蕴含的定量规律。分析结果表明,下切性河流系统存在床沙的响应与补偿机制,是河流系统由下切转为平衡的重要动力因素之一。响应调整后深切河段的床沙能消耗更多侵蚀能量,从而维持高比降的陡坡河道。因此,下切深度的沿程分布与一些特殊的纵剖面形态有关。经统计发现,流量与床沙(下垫面条件)是最重要的纵剖面控制性因素,引入量纲一参数可与比降建立良好的线性关系。  相似文献   

4.
A series experiments are conducted to investigate the effects of streambed profile on the erosion and deposition of debris flows. It is found that straight channel can increase the run out of debris flows by 10–25%, compared to that of surfaces without channels, and that travel distance was positively correlated with the hydraulic radius of the channel. In addition, the presence of straight channels caused the volume of debris flow deposition to become normally distributed with respect to travel distance. In the case of curved channels, increases in the sinuosity index resulted in significant blockage and obstruction. In the deposition zone, the maximum deposition volume for a channel with a comparatively low sinuosity index (1.05) was <?50% of the minimum deposition volume for a straight channel. Furthermore, the channel curvature affected not only the positions of deposition peaks along the travel distance but also the debris flow magnitudes in each unit interval (0.5 m). This study demonstrates the effects of differences in channel morphology on the erosional and depositional processes of gully debris flows. These findings are of significant importance for guiding debris flow risk assessment and for the restoration and reconstruction of downstream regions.  相似文献   

5.
安哥拉深水水道地质知识库建立及应用   总被引:1,自引:0,他引:1  
利用浅层(上新统)三维高频地震资料的剖面、切片和属性信息,对安哥拉陆坡区深水水道特征和定量关系进行研究,在复合水道和单一水道两个层次上建立了安哥拉地区浊积水道定量化地质知识库.研究结果表明:研究区单一水道活动方式类似于曲流河点坝模式,即单一水道仅沿侧向(垂直于古流向)整体迁移,不存在整体“下游扫动”分量,且在平面上其侧积复合体呈“同心半环状”,单一水道的砂体以垂向加积方式充填在轴部,厚度向边部减薄;单一水道的宽度与深度、弯曲弧长与弯曲度之间存在较好的正相关性;复合水道样式按照内部单一水道的活动方式分为(Ⅰ)侧向迁移、(Ⅱ)斜列迁移和(Ⅲ)摆动迁移三类模式,且(Ⅰ)类主要发育在高弯曲段(弯曲度>1.3),Ⅱ类和Ⅲ类主要发育在低弯曲段(1<弯曲度≤1.3);该地质知识库成功应用到实际三维地质建模中,具有推广价值.本文研究不仅可以完善深水水道定量分布模式,而且可以有效降低此类油田开发风险,具有理论和实际意义.  相似文献   

6.
河道复杂采砂坑附近流场的数值模拟   总被引:18,自引:0,他引:18       下载免费PDF全文
数值模拟研究紊流问题的关键是充分考虑雷诺应力的差异,应用各向异性三维代数应力紊流数学模型(ASM)模拟研究了天然河道的次生流问题。以方形管道为算例与试验的比较表明,所应用的ASM模型精度较高;将ASM与非结构网格有机结合模拟分析河道复杂采砂坑,计算成果与前人结果类比,令人满意。ASM模型为研究河床稳定与变形提供了有力工具。分析表明,采砂坑使原稳定的水流形态发生变化,沿主流方向形成纵向涡旋导致采砂坑上游缘口冲刷,坑内的横向次生流则造成横向侵蚀;紊动特性研究表明采砂坑严重影响河床稳定。  相似文献   

7.
The water column flow velocity of 36 river sections in the river reach between Hankou (Wuhan) and Wuxue of the middle-lower Changjiang River. Their cross sectional distribution patterns in relation to the river channel morphologies were examined by using ship-mounted ADCP (Acoustic Doppler Current Profiler) instrument. The results indicate four (I-VI) types of river channel morphology associated flow patterns: I—laterally deepening riverbed topographic pattern; II—symmetrical to asymmetrical riverbed topographic pattern; III—relative flat riverbed topographic pattern, and IV—sandbar supported riverbed topographic pattern. All these correspond to the different patterns of flow velocity distribution. The maximum flow velocity is usually related to the deeper water depth, but irregular water column distribution of flow current velocity results often from the vortices’ current associated with river knots. Deeper river water depth is usually identified in the river reach located slightly downstream to the river knot, where faster flow velocity occurs. Downward change in flow velocity fits semi-log law, showing an exponential decreasing flow current with the maximum flow velocity near the water surface. However, in the river reach near the river knots, the water column distribution of flow current velocity does not fit the semi-log law, showing the irregular flow current pattern. This study, in context of river catchment management, highlights the controls of riverbed morphology to the flow current structure, which will shed light on the post study of Three Gorges damming in 2009.  相似文献   

8.
全球范围内干旱区河流正日益受到高强度人类活动的扰动,但较少研究报道这种扰动对河流地貌过程的影响。采用历史文献、水文数据和遥感影像相结合的方式,详细分析了人类活动影响下中国最大内陆河塔里木河(简称塔河)的河流地貌变化过程。结果表明:塔河流域人类活动的规模和强度日趋上升,对河流水沙过程和地貌形态等影响显著。近50年来,塔河干流低流量过程发生频率呈显著上升趋势,而中、高流量过程则呈降低趋势,河道径流和输沙量减少显著。塔河干流上游现为游荡河道,冲淤变化剧烈且总体处于淤积抬升状态, 但河道平均河宽呈减小趋势,可能是因为塔河两岸冲积平原的开垦和河岸加固。塔河中游弯曲河道蜿蜒系数在近几十年呈缓慢上升趋势,但明显低于废弃古河道。  相似文献   

9.
大型水库运行改变了坝下游水沙条件,引起河床冲淤、洲滩形态等适应性调整,尤其是近坝段沙质河床的响应最为敏感。以三峡大坝下游近坝段沙质河段为研究对象,采用1955-2018年水沙数据与1975-2018年地形资料,研究了河床冲淤量及河床形态、洲滩形态演变及联动关系等。研究表明:伴随流域来沙量减少,1975-2018年河床为累积冲刷态势,枯水河槽冲刷量占总冲刷量的93.1%,同步发生洲滩面积减少、深泓下切;以2009年分界,滩槽冲淤逐渐由"低滩冲刷,高滩淤积"逐渐向"低滩、高滩均冲"转变;受来沙量锐减、河道采砂活动等影响,2013年以来河床冲刷强度显著增大,疏浚抛泥对滩槽冲淤的影响较小;航道工程实施前滩群演变关联性强,太平口心滩发育与头部下移引起腊林洲边滩上段面积减小并后退,对应腊林洲边滩尾部面积增大且淤宽,使得三八滩面积减小且右缘蚀退,金城洲逐渐由边滩演变为心滩;航道工程实施后太平口心滩与腊林洲边滩上段关联性减弱,受航道工程及疏浚抛泥等影响腊林洲边滩下段淤宽,引起三八滩维持面积持续减小、右缘后退及左移态势,促使金城洲萎缩且分散。  相似文献   

10.
Hierarchical object-based stochastic modeling of fluvial reservoirs   总被引:27,自引:0,他引:27  
This paper describes a novel approach to modeling braided stream fluvial reservoirs. The approach is based on a hierarchical set of coordinate transformations involving relative straingraphic coordinates, translations, rotations, and straightening functions. The emphasis is placed on geologically sound geometric concepts and realistically-attainable conditioning statistics including areal and vertical facies proportions. Modeling proceeds in a hierarchical fashion, that is (1) a stratigraphic coordinate system is established for each reservoir layer, (2) a number of channel complexes are positioned within each layer, and then (3) channels are positioned within each channel complex. The geometric specification of each sand-filled channel within the background of floodplain shales is a marked point process. Each channel is marked with a starting location, size parameters, and sinuosity parameters. We present the hierarchy of eight coordinate transformations, introduce an analytical expression for the channel cross-section shape, describe the simulation algorithm, and demonstrate how the realizations are made to honor local conditioning data from wells and global conditioning data such as areal and vertical proportions.  相似文献   

11.
Abstract: Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes (the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.  相似文献   

12.
选取受构造活动影响较弱的Rio Muni盆地近现代深水水道为研究样本,分段测量各水道的底床坡度和曲率,并进行相关性分析。研究认为:深水水道底床坡度与曲率呈幂函数关系,水道曲率随着坡度的增大而减小;但不同坡度条件下曲率变化速率表现出明显的差异——一般随坡度的减小,单位坡度变化范围内,曲率的增幅加大。坡度对水道曲率的控制作用主要体现在水道切谷底形和内部充填结构2个方面,其中对后者的影响作用最为显著。但实质上,坡度是通过对水道内部沉积物能量的控制,进而影响了其侵蚀及充填能力,最终使水道平面形态和内部充填结构发生变化。  相似文献   

13.
现代缓坡三角洲沉积模式--以鄱阳湖赣江三角洲为例   总被引:1,自引:0,他引:1  
在我国,缓坡三角洲形成了不少大油田。关于缓坡三角洲的沉积模式,前人做了大量研究,但大都针对古代地层。由于古代地层精细对比和沉积环境解释常常因人而异,因此总结出来的沉积模式五花八门,可靠性较低。鉴于此,本文从现代实例入手,选择了鄱阳湖赣江三角洲,采用野外实地测量、探槽、浅钻孔、探地雷达、粒度分析等方法,对其沉积特征进行系统研究,建立了缓坡三角洲沉积模式。本次研究主要取得了如下重要认识:①在三角洲平原上发现了两种新的砂体类型,即汊口滩和并口滩,分别位于分流河道分汊处和合并处,这意味着分流河道的分汊、合并部位也是有利的油气聚集部位;②在分流河道砂体中存在连片披覆型、孤立充填型、孤立残留型三种类型的落淤层,并提出了其形成机制;③统计了分流河道的定量参数,提出了分流河道宽度的变化规律,即从上三角洲平原到下三角洲平原,分流河道逐渐变窄,分一次分汊其宽度平均降低1/2,而且分汊频率增高,数量变多,弯度降低,沉积物变细变薄,砂体间连通性变差;④三角洲前缘不发育水下分流河道,而是发育河口坝和席状滩;⑤由于坡度平缓,湖平面小幅度变化会引起湖岸线大规模进退,可导致水下与水上沉积频繁交互,因此缓坡三角洲沉积在地震上不会有叠瓦状或反S形前积反射,而是呈平行或亚平行反射。  相似文献   

14.
The geomorphological changes experienced by the middle and lower Calore River (Southern Italy) between 1957 and 1998 were investigated. Data derived from field surveys and interpretation of topographic maps and aerial photos were introduced into a geographic information system (GIS) and processed. The results showed that the Calore River underwent a mean narrowing of 66 %, with a peak of 86 %. The channel length increased by approximately 75 m and the sinuosity from 1.311 to 1.314. The extension of fluvial bars reduced by more than 83 %, while their number increased from 151 to 381. Field evidence of riverbed lowering, such as river terraces formed in the considered time span and exhumation of foundations of bridges and flood-walls, were also constantly detected. Due to these channel adjustments, the Calore River morphology changed from transitional to single-thread. These results were coherent with those reported in the pre-existing literature about channel adjustments experienced by many rivers during the twentieth century. They all were explainable with a reduction of the bedload transport; this latter, in turn, is completely in accordance with the environmental changes that affected the Calore River system in the considered period (i.e., damming and/or channelization of the main tributaries, reduction of liquid discharge due to water withdrawals and sediment mining from the riverbed).  相似文献   

15.
The deep-tow instrument package of Scripps Institution of Oceanography provides a unique opportunity to delineate small-scale features of a size comparable to those features usually described from ancient deep-sea fan deposits. On Navy Fan, the deep-tow side-scanning sonar readily detected steep channel walls and steps and terraces within channels. The most striking features observed in side-scan are large crescentic depressions commonly occurring in groups. These appear to be large scours or flutes carved by turbidity currents. Four distinct acoustic facies were mapped on the basis of qualitative assessment of reflectivity of 4 kHz reflection profiles. There is a distinct increase in depth of acoustic penetration, number of sub-bottom reflectors, and reflector continuity from the upper fan-valley to the lower fan. These changes are accompanied by a decrease in surface relief. Navy Fan is made up of three active sectors. The active upper fan is dominated by a single channel with prominent levees that decrease in height downstream. The active mid-fan region or suprafan is where sand is deposited. Well defined distributary channels with steps, terraces, and other mesotopography terminate in depositional lobes. Interchannel areas are rough, containing giant scours as well as other relief. The active lower fan accumulates mud and silt and is without resolvable surface morphology. The morphological features seen on Navy Fan other than levees, interchannel areas, and lobes are principally erosional. The distributary channels are up to 0.5 km wide and 5–15 m deep. Such features, because of their large size and low relief, are rarely completely exposed or easily detectable in ancient rock sequences. Some flute-shaped scours are larger than channels in cross section but many are 5-30 m across and 1-2 m deep. If observed in ancient rocks transverse to palaeo-current direction, they would perhaps be indistinguishable from channels. Surface sediment distribution combined with fan morphology can be used to relate modern sediments to facies models for ancient fan sediments. Gravel and sand occur in the upper valley, massive sand beds in the mid-fan distributary channels, classical complete Bouma sequences on depositional lobes, incomplete Bouma sequences (lacking division a) on the lower mid-fan, and Bouma sequence with lenticular shape or other limited extent on mid-fan interchannel areas and on levees.  相似文献   

16.
In this study, the distribution of channel‐bed sediment facies in the lowermost Mississippi River is analysed using multibeam data, complemented by sidescan sonar and compressed high‐intensity radar pulse seismic data, as well as grab and core samples of bed material. The channel bed is composed of a discontinuous layer of alluvial sediment and a relict substratum that is exposed on the channel bed and sidewalls. The consolidated substratum is made up of latest Pleistocene and Early Holocene fluvio‐deltaic deposits and is preferentially exposed in the deepest thalweg segments and on channel sidewalls in river bends. The exposed substratum commonly displays a suite of erosional features, including flutes that are quantitatively similar in form to those produced under known laboratory conditions. A total of five bed facies are mapped, three of which include modern alluvial deposits and two facies that are associated with the relict substratum. A radius of curvature analysis applied to the Mississippi River centreline demonstrates that the reach‐scale distribution of channel‐bed facies is related to river planform. From a broader perspective, the distribution of channel‐bed facies is related to channel sinuosity — higher sinuosity promotes greater substratum exposure at the expense of alluvial sediment. For example, the ratio of alluvial cover to substratum is ca 1·5:1 for a 45 km segment of the river that has a sinuosity of 1·76 and this ratio increases to ca 3:1 for a 120 km segment of the river that has a sinuosity of 1·21. The exposed substratum is interpreted as bedrock and, given the relative coverage of alluvial sediment in the channel, the lowermost Mississippi River can be classified as a mixed bedrock‐alluvial channel. The analyses demonstrate that a mixed bedrock‐alluvial channel boundary can be associated with low‐gradient and sand‐bed rivers near their marine outlet.  相似文献   

17.
Assessment of uncertainty in the performance of fluvial reservoirs often requires the ability to generate realizations of channel sands that are conditional to well observations. For channels with low sinuosity this problem has been effectively solved. When the sinuosity is large, however, the standard stochastic models for fluvial reservoirs are not valid, because the deviation of the channel from a principal direction line is multivalued. In this paper, I show how the method of randomized maximum likelihood can be used to generate conditional realizations of channels with large sinuosity. In one example, a Gaussian random field model is used to generate an unconditional realization of a channel with large sinuosity, and this realization is then conditioned to well observations. Channels generated in the second approach are less realistic, but may be sufficient for modeling reservoir connectivity in a realistic way. In the second example, an unconditional realization of a channel is generated by a complex geologic model with random forcing. It is then adjusted in a meaningful way to honor well observations. The key feature in the solution is the use of channel direction instead of channel deviation as the characteristic random function describing the geometry of the channel.  相似文献   

18.
Tectonic deformation of the land surface is known to influence the gradient, water and sediment discharge and the grain-size of modern fluvial systems. Any change in these variables alters the equilibrium of a fluvial system, potentially causing a change in channel morphology. 3D seismic data from the Tertiary (Miocene) age, Upper Frio Formation, Kelsey Field, South Texas, in the US are used to examine changing fluvial channel morphology through time during a period of active growth of a rollover anticline in the hangingwall of a normal fault (the Vicksburg Fault). The studied interval varies between 22 and 47 m thick, and spans several hundred thousand years. It consists of an alternation of fluvial sandstones, overbank mudstones and coal. Seismic extractions show the evolution of sinuous fluvial channels during a phase of growth fault activity. Prior to growth, a single sinuous channel is imaged. During growth, the fluvial system became decapitated by a developing rollover anticline, and a highly sinuous drainage network formed, with frequent avulsion events, headward propagation of streams and related stream capture. Increased channel sinuosity was spatially associated with increased avulsion frequency in the area down dip to the east of the rollover anticline, more than 10 km from the active fault. More than 25 m of relative accommodation developed on the flank of the growing rollover anticline compared with on the crest. The increased channel sinuosity is interpreted as reflecting an increase in longitudinal valley slope analogous to observations made in flume experiments and modern river systems. The increase in avulsion frequency is attributed to increased aggradation as the rivers adjusted back to equilibrium grade following the increase in slope.  相似文献   

19.
A study reach of the Calamus River, Nebraska Sand Hills, has a low sinuosity (less than 1.3) and braiding parameter (less than 1). Depending on sinuosity, the channel is occupied by alternate bars and point bars, the emergent parts of which form nuclei for midstream bars (islands). Channel migration occurs by bend expansion and translation, downstream and lateral growth of islands, and by chute cutoff. Channel-bed sediment is mainly medium-grained sand, but gravel and coarser sand sizes occur in thalweg areas adjacent to cutbanks and upstream parts of bars and islands, and finer sands occur on the downstream parts of bars and filling channels. Curved-crested dunes cover most of the channel bed at most flow stages, with ripples restricted to shallow areas near banks. Bed material is mostly large-scale cross-stratified, with small-scale cross-strata interbedded with plant debris occurring in topographically high areas near banks. Vibracores through channel bars show a basal erosion surface overlain by large-scale cross-stratified sands, in turn overlain by small-scale cross-stratified sand interbedded with plant debris. The overall sequence generally fines upwards, but the large-scale cross-stratified portion either fines upwards, coarsens upwards, or shows little grain size variation. Lithofacies distributions vary spatially within and between bars depending on position in the bar and local channel curvature/width, in a similar way to unbraided rivers elsewhere. Lithofacies of bar deposits are similar to those in the active channel, and the elevations of the basal erosion surface and adjacent channel thalweg correspond closely. Channels abandoned by chute cutoff are filled progressively from the upstream end, and comprise deposits similar to the downstream parts of bars (i.e. fining upwards). The downstream extremities of channel fills may contain large proportions of peat relative to sand, but little mud due to the paucity of such fine suspended load in the Calamus.  相似文献   

20.
Fluvial systems tend to deposit sediment in well-defined relational geometries and in vertically and laterally repeating patterns. These sedimentary deposits are preserved to varying degrees depending on how much the fluvial system reworks the deposits. The Paskapoo bedrock aquifer system in southern Alberta, Canada, was deposited in a foreland depositional basin during uplift of the Rocky Mountains, and both the geomorphic model and field evidence indicate that the upper 100 m of the local aquifer system contains well-preserved, highly connected paleo-channels and associated overbank deposits. In order to evaluate the value of different types of data, a simplified stochastic-numerical groundwater flow model was developed to examine the sensitivity of results to model parameters. Parameters examined include: fraction of the formation made up of channel sands; meander and sinuosity factors; width-to-depth ratios of preserved channels; and crevasse splay conductivity. In all cases examined, the system exhibited anisotropic behavior with the along-channel flow direction being the most permeable and the vertical direction being least permeable. In general, the strongest control on the resulting effective anisotropic hydraulic conductivities was channel fraction, but geometric factors that control between-channel connectivity (e.g., channel sinuosity) had an appreciable effect on the across-channel flow direction effective permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号