首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chloride complexation of Cu+ controls the solubility of copper(I) oxide and sulfide ore minerals in hydrothermal and diagenetic fluids. Solubility measurements and optical spectra of high temperature CuCl solutions have been interpreted as indicating the formation of CuCl, , and complexes. However, no other monovalent cation forms tri- and tetrachloro complexes. EXAFS spectra of high temperature Cu-Cl solutions, moreover, appear to show only CuCl and complexes at T > 100 °C. To reconcile these results, I investigated the nature and stability of Cu-Cl complexes using ab initio cluster calculations and ab initio (Car-Parrinello) molecular dynamics simulations for CuCl-NaCl-H2O systems at 25 to 450 °C. Ab initio molecular dynamic simulations of 1 m CuCl in a 4 m Cl solution give a stable complex at 25 °C over 4 ps but show that the third Cl is weakly bound. When the temperature is increased along the liquid-vapour saturation curve to 125 °C, the complex dissociates into and Cl; only forms at 325 °C and 1 kbar. Even in a 15.6 m Cl brine at 450 °C, only the complex forms over a 4 ps simulation run.Cluster calculations with a static dielectric continuum solvation field (COSMO) were used in an attempt directly estimate free energies of complex formation in aqueous solution. Consistent with the MD simulations, the complex is slightly stable at 25 °C but decreases in stability with decreasing dielectric constant (ε). The complex is predicted to be unstable at 25 °C and becomes increasingly unstable with decreasing dielectric constant. In hydrothermal fluids (ε < 30) both the and complexes are unstable to dissociation into and Cl.The results obtained here are at odds with recent equations of state that predict and complexes are the predominant species in hydrothermal brines. In contrast, I predict that only complexes will be significant at T > 125 °C, even in NaCl-saturated brines. The high-temperature (T > 125 °C) optical spectra of CuCl solutions and solubility measurements of Cu minerals in Cl-brines need to be reinterpreted in terms of only the CuCl and complexes.  相似文献   

2.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

3.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

4.
The terrestrial mantle has a well defined Sb depletion of ∼7 ± 1 (Jochum and Hofmann, 1997), and the lunar mantle is depleted relative to the Earth by a factor of ∼50 ± 5 (Wolf and Anders, 1980). Despite these well defined depletions, there are few data upon which to evaluate their origin—whether due to volatility or core formation. We have carried out a series of experiments to isolate several variables such as oxygen fugacity, temperature, pressure, and silicate and metallic melt compositions, on the magnitude of . The activity of Sb in FeNi metal is strongly composition dependent such that solubility of Sb as a function of fO2 must be corrected for the metal composition. When the correction is applied, Sb solubility is consistent with 3+ valence. Temperature series (at 1.5 GPa) shows that decreases by a factor of 100 over 400 °C, and a pressure series exhibits an additional decrease between ambient pressure (100 MPa) and 13 GPa. A strong dependence upon silicate melt composition is evident from a factor of 100 decrease in between nbo/t values of 0.3 and 1.7. Consideration of all these variables indicates that the small Sb depletion for the Earth’s mantle can be explained by high PT equilibrium partitioning between metal and silicate melt . The relatively large lunar Sb depletion can also be explained by segregation of a small metallic core, at lower pressure conditions where is much higher (2500).  相似文献   

5.
6.
Although the stable oxygen isotope fractionation between dissolved sulfate ion and H2O (hereafter ) is of physico-chemical and biogeochemical significance, no experimental value has been established until present. The primary reason being that uncatalyzed oxygen exchange between and H2O is extremely slow, taking 105 years at room temperature. For lack of a better approach, values of 16‰ and 31‰ at 25 °C have been assumed in the past, based on theoretical ‘gas-phase’ calculations and extrapolation of laboratory results obtained at temperatures >75 °C that actually pertain to the bisulfate system. Here I use novel quantum-chemistry calculations, which take into account detailed solute-water interactions to establish a new value for of 23‰ at 25 °C. The results of the corresponding calculations for the bisulfate ion are in agreement with observations. The new theoretical values show that sediment -data, which reflect oxygen isotope equilibration between sulfate and ambient water during microbial sulfate reduction, are consistent with the abiotic equilibrium between and water.  相似文献   

7.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   

8.
9.
10.
We performed a series of synthesis experiments at 1 atm pressure to investigate the substitution mechanisms of 1+ and 3+ ions into olivine. Forsterite crystals were grown from bulk compositions that contained the element of interest (e.g. Li) and different amounts of additional single trace elements. By working at constant (major element) liquid composition and temperature we eliminated all compositional effects other than those due to the trace elements. Mineral-melt pairs were then analysed to determine the compositional-dependence of the partition coefficient (D), which corresponds to , and where [element] refers to weight concentration of the element in the respective phase.We find that Li forms a stable coupled substitution with Sc and, at above ∼500 ppm Sc in the crystal, Li+ and Sc3+ ions form an ordered neutral complex ([LiSc]). This complex dissociates at lower trace element concentrations and a second, concentration-independent, mechanism begins to dominate. This second solution mechanism is most likely 2Li+ ⇔ Mg2+ where one of the Li atoms is in an interstitial position in the crystal lattice. Natural olivines show Li contents slightly greater than Sc (on an atomic basis), indicating that both substitution mechanisms are significant. Unlike Sc, Al does not appear to form a stable complex with Li in the olivine structure.Sodium is highly incompatible in olivine with of ∼0.00015-0.03. Olivine-liquid partitioning of Na+ is independent of Sc3+ or Al3+ concentration. This indicates that the coupled substitution of Na+ with any 3+ ions is unlikely. Instead, the relevant substitution mechanism appears to be 2Na+ ⇔ Mg2+. Although independent of 3+ ion concentration, is inversely correlated with the Li concentration of both melts and crystals, implying that Na competes (unsuccessfully) with Li to replace Mg in the olivine structure.Aluminium is highly incompatible in forsterite . Values of are similar for all phase pairs synthesised from starting materials containing between 10 and 100,000 ppm Al. This suggests that Al is principally incorporated in forsterite by replacing one Mg and one Si atom , where the Al atoms on octahedral (Mg) and tetrahedral (Si) sites are dissociated from one another.The incorporation of gallium into forsterite is influenced by the presence of Li. Where Li concentration in the crystal is much greater than that of Ga (on an atomic basis) we find an excellent correlation between and melt Li content. This relationship indicates that Ga3+ and Li+ replace 2Mg2+ on octahedral sites and that the Ga and Li atoms are, like Sc and Li, strongly associated in the crystal structure.The mechanism by which scandium is incorporated into forsterite is strongly governed by the presence Li. As discussed above, ordered complexes form readily in forsterite in Li-rich experiments. Under Li-absent but Sc-rich conditions (Sc in the crystal >∼500 ppm), is proportional to the concentration of Sc in the melt. This indicates that Sc incorporation is charge-balanced by the formation of magnesium vacancies , and that both species are associated . At lower Sc concentrations (<500 ppm in the crystal), the concentration-dependence of partitioning indicates that the complexes dissociate.Our results demonstrate that partitioning of 1+ and 3+ ions into olivine is complex and involves a range of point defects which yield strongly composition-dependent crystal-melt partition coefficients. Since physical and chemical properties of natural olivine, such as diffusion of 6Li and 7Li and H2O solubility, depend on the concentrations of the defects identified in this study, our results provide an important insight into how determining substitution mechanisms can improve our understanding of large-scale mantle processes and properties.  相似文献   

11.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

12.
Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO2 in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3), siderite (FeCO3), as well as the far less common mineral, dawsonite (NaAlCO3(OH)2). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO2 sequestration.In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: , from under- and oversaturated solutions at 50-200 °C in basic media at 1.0 mol · kg−1 NaCl. The solubility products (Qs) obtained were extrapolated to infinite dilution to obtain the solubility constants (. Combining the fit of these values and fixing  at 25 °C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 °C: , and . Subsequently, we were able to derive values for the Gibbs energy of formation (, enthalpy of formation ( and entropy ( of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 °C in the presence of a saline solution with and without silica-containing minerals.  相似文献   

13.
Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ∼1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ∼0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ34S, δ18O of pore water indicate close coupling of anaerobic C, S, and Fe cycles. δ18O- can increase by 2-3‰ during anaerobic recycling without net change in δ34S-, demonstrating reduction coupled to complete anaerobic reoxidation to and a δ18O- reduction + reoxidation fractionation factor?12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe2+ (∼1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ18O- equivalent in mass to?25% of the annual riverine delivery of to the global ocean. Unsteady conditions result in preservation of unusually heavy δ34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits. In contrast, bioturbated facies adjacent to physically reworked regions accumulate isotopically light S (δ34S to −20‰) in otherwise similar decomposition regimes. The isotopic patterns of both physically and biologically reworked regions can be simulated with simple diagenetic models. Heavy S isotopic signatures are largely a consequence of unsteady diffusion and progressive anaerobic burndown into underlying deposits, whereas isotopically depleted bioturbated deposits predominantly reflect biogenic diffusive scaling and isotopic distillation/diffusive pumping associated with reoxidation in burrow walls immediately adjacent to reduced zones. The S isotopic transition from unsteady physically controlled regions of the Amazon delta moving laterally into bioturbated facies mimics the transition of S isotopic patterns temporally in the geologic record during the rise of bioturbation. No special role for S disproportionation is required to explain these differences. The potential role of unsteady, suboxic diagenesis and dynamic reworking of sediments has been largely ignored in models of the evolution of surficial elemental cycling and interpretations of the geologic record.  相似文献   

14.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

15.
The concentration and distribution of Pt and Au in a fluid-melt system has been investigated by reacting the metals with S-free, single-phase aqueous brines (20, 50, 70 wt% eq. NaCl) ± peraluminous melt at a confining pressure of 1.5 kbar and temperatures of 600 to 800 °C, trapping the fluid in synthetic fluid inclusions (quartz-hosted) and vesicles (silicate melt-hosted), and quantifying the metal content of the trapped fluid and glass by laser ablation ICP-MS. HCl concentration was buffered using the assemblage albite-andalusite-quartz and fO2 was buffered using the assemblage Ni-NiO. Over the range of experimental conditions, measured concentrations of Pt and Au in the brines (, ) are on on the order of 1-103 ppm. Concentrations of Pt and Au in the melt (, ) are ∼35-100 ppb and ∼400-1200 ppb, respectively. Nernst partition coefficients (, ) are on the order of 102-103 and vary as a function of (non-Henry’s Law behavior). Trapped fluids show a significant range of metal concentrations within populations of inclusions from single experiments (∼ 1 log unit variability for Au; ∼2-3 log unit variability for Pt). Variability in metal concentration within single inclusion groups is attributed to premature brine entrapment (prior to metal-fluid-melt equilibrium being reached); this allows us to make only minimum estimates of metal solubility using metal concentrations from primary inclusions. The data show two trends: (i) maximum and average values of and in inclusions decrease ∼2 orders of magnitude as fluid salinity () increases from ∼4 to 40 molal (20 to 70 wt % eq. NaCl) at a constant temperature; (ii) maximum and average values of increase approximately 1 order of magnitude for every 100°C increase temperature at a fixed . The observed behavior may be described by the general expression:
  相似文献   

16.
17.
Gypsum precipitation kinetics were examined from a wide range of chemical compositions , ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca2+-rich Dead Sea brine and -rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures:
  相似文献   

18.
19.
Oceanic basalts, such as mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), are characterized by large isotopic and trace element variability that is hard to reconcile with partial melting of a peridotitic mantle alone. Their variability has been attributed to the presence of heterogeneities within the mantle, such as recycled crust, metasomatized material or outer core contribution. There have been few attempts to constrain the major element composition of those heterogeneities, most studies focusing on incompatible trace elements and radiogenic isotopes. Here, we report Zn, Mn and Fe systematics in mafic and ultramafic systems (whole-rocks and minerals) and we explore their use for detecting lithological heterogeneities that deviate from peridotitic mantle dominated by olivine and orthopyroxene. We suggest that Zn/Fe ratio is a particularly promising proxy. Zn/Fe fractionates equally between olivine, orthopyroxene and melt (e.g. the inter-mineral exchange coefficients  ∼  is ∼0.9-1), and the distribution of Zn/Fe between minerals appears to be temperature-independent within error. In contrast, clinopyroxene and garnet are characterized by low Zn/Fe ratios compared to co-existing melt, olivine and orthopyroxene, that is, and are both <<1. These partitioning behaviors imply that Zn/Fe ratios are minimally fractionated during partial melting of peridotite and differentiation of primitive basalts, if differentiation is dominated by olivine control. Thus, the Zn/Fe ratios of primitive basalts preserve the Zn/Fe ratio of the primary parental magma, providing insight into the signature of the mantle source region. We also infer that Zn/Fe ratios in melts are unlikely to be fractionated by modal variations in peridotitic material but are highly fractionated if garnet and/or clinopyroxene are the main phases in the source during melting. Similar Zn/Fe ratios between MORB and average upper mantle confirm the lack of fractionation during peridotite melting. However, high Zn/Fe ratios of some OIB cannot be explained by peridotite melting alone, but instead require the presence of high Zn/Fe lithologies or lithologies that have bulk exchange coefficients  < 1. All garnet-bearing or clinopyroxene-bearing lithologies, such as eclogites and garnet pyroxenites, fit the latter requirement.  相似文献   

20.
Microbiological reduction of a biogenic sulfated green rust , was examined using a sulfate reducing bacterium (Desulfovibrio alaskensis). Experiments investigated whether could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic as the electron acceptor, at circumneutral pH in unbuffered medium. transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use as an electron acceptor. , vivianite and an iron sulfur compound were formed as a result of reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号