首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Reheated silicate melt inclusions in volcanic rock samples from Mt. Somma-Vesuvius, Italy, have been analyzed for 29 constituents including H2O, S, Cl, F, B, and P2O5. This composite volcano consists of the older Mt. Somma caldera, formed between 14 and 3.55 ka before present, and the younger Vesuvius cone. The melt inclusion compositions provide important constraints on pre-eruptive magma geochemistry, identify relationships that relate to eruption behavior and magma evolution, and provide extensive evidence for magmatic fluid exsolution well before eruption. The melt inclusion data have been categorized by groups that reflect magma compositions, age, and style of eruptions. The data show distinct differences in composition for eruptive products older than 14.0 ka (pre-caldera rocks) versus eruptive products younger than 3.55 ka. Moreover, pre-caldera eruptions were associated with magmas relatively enriched in SiO2, whereas eruptions younger than 3.55 ka (i.e., the syn- and post-caldera magmas which generated the Somma caldera and the Vesuvius cone) were derived from magmas comparatively enriched in S, Cl, CaO, MgO, P2O5, F, and many lithophile trace elements. Melt inclusion data indicate that eruptive behavior at Vesuvius correlates with pre-eruptive volatile enrichments. Most magmas associated with explosive plinian and subplinian events younger than 3.55 ka contained more H2O, contained significantly more S, and exhibited higher (S/Cl) ratios than syn- and post-caldera magmas which erupted during relatively passive interplinian volcanic phenomena. Received January 10, 2000 Revised version accepted July 17, 2000  相似文献   

2.
Summary The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region. Received August 1, 2000; accepted November 2, 2000  相似文献   

3.
The Campi Flegrei caldera, an active volcanic field in the Campanianprovince, Italy, is a nested structure generated by the CampanianIgnimbrite (37 ka BP) and the Neapolitan Yellow Tuff (12 kaBP) eruptions. Since at least 60 ka BP Campi Flegrei has producedmagmas with variable chemical and Sr isotopic compositions.87Sr/86Sr ratios increase through time from 0·7068 to0·7086, with the highest ratios detected in the least-evolvedshoshonitic products. The origin of this progressive Sr isotopicvariability has been investigated using new Sr, Nd and Pb isotopicdata for volcanic rocks and entrained xenoliths. The data obtainedare combined and discussed with previous geochemical and Srisotope data and used to suggest a multi-stage evolution forthe magmatic system, mainly involving deeper and shallower crustalmagma storage reservoirs. The deeper reservoir is proposed tobe a magma chamber periodically refilled by primitive maficmagmas which subsequently undergo contamination by crustal material.The assimilated crustal material is represented by xenolithsrecovered in the shoshonitic pyroclastic products. Magma batchesoriginating from the deeper reservoir migrated towards the surfaceand fed a shallower complex magmatic system. The deeper chamberwas tapped during the eruption of least evolved magmas by regionalfault systems. In addition to crystal–liquid fractionation,open-system processes occurred in the shallower system. KEY WORDS: Campi Flegrei; crustal contamination; xenoliths  相似文献   

4.
Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (>1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record (Wulf et al., 2004, Wulf et al., 2008) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.  相似文献   

5.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

6.
A continuous-coring borehole recently drilled at Camaldoli dellaTorre on the southern slopes of Somma–Vesuvius providesconstraints on the volcanic and magmatic history of the Vesuvianvolcanic area since c. 126 ka BP. The cored sequence includesvolcanic units, defined on stratigraphical, sedimentological,petrological and geochemical grounds, emitted from both localand distal vents. Some of these units are of known age, suchas one Phlegraean pre-Campanian Ignimbrite, Campanian Ignimbrite(39 ka), Neapolitan Yellow Tuff (14· 9 ka) and VesuvianPlinian deposits, which helps to constrain the relative ageof the other units. The main rock types encountered are shoshonite,phonotephrite, latite, trachyte and phonolite. The sequenceincludes, from the base upwards: a thick succession of pyroclasticunits emplaced between 126 and 39 ka, most of them attributedto eruptions that occurred in the Phlegraean area; the CampanianIgnimbrite; the products of a local tuff cone formed between39 ka and the deposition of the products of the earliest activityof the Mt. Somma volcano; the products of the Somma–Vesuviusvolcano, which include from the base upwards a thick sequenceof lavas, pyroclastic rocks and the products of a local spattercone dated between 3· 7 ka and AD 79. The data obtainedfrom the study of the borehole show that, before the CampanianIgnimbrite eruption, low-energy explosive volcanism took placein the Vesuvian area, whereas mostly high-energy explosive eruptionscharacterized the Campi Flegrei activity. In the Vesuvian area,Campanian Ignimbrite deposition was followed by the eruptionof a local tuff cone and a long repose time, which predatedthe formation of the Mt. Somma edifice. Since 18· 3 ka(Pomici di Base eruption) the activity of Somma–Vesuviusbecame mostly explosive with rare lava effusions. The shallowestcored deposits belong to the Camaldoli della Torre cone, formedbetween the Pomici di Avellino and Pomici di Pompei eruptions(3· 7 ka–AD 79). New geochemical and Sr–Nd–Pb–B-isotopicdata on samples from the drilled core, together with those availablefrom the literature, allow us to further distinguish the volcanicrocks as a function of both their provenance (i.e. Phlegraeanor Vesuvian areas) and age, and to identify different magmaticprocesses acting through time in the Vesuvian mantle source(s)and during magma ascent towards the surface. Isotopically distinctmagmas, rising from a mantle source variably contaminated byslab-derived components, stagnated at mid-crustal depths (8–10km below sea level) where magmas differentiated and were probablycontaminated. Contamination occurred either with Hercynian continentalcrust, mostly during the oldest stages of Vesuvian activity(from 39 to 16 ka), or with Mesozoic limestone, mostly duringrecent Vesuvian activity. Energy constrained assimilation andfractional crystallization (EC-AFC) modelling results show thatcontamination with Hercynian crust probably occurred duringdifferentiation from shoshonite to latite. Contamination withlimestone, which is not well constrained with the availabledata, might have occurred only during the transition from shoshoniteto tephrite. From the ‘deep’ reservoir, magmas rosetowards a series of shallow reservoirs, in which they differentiatedfurther, mixed, and fed volcanic activity. KEY WORDS: Somma–Vesuvius; crustal contamination; source heterogeneity; radiogenic and stable isotopes; magmatic system  相似文献   

7.
The intraplate Cameroon Volcanic Line (CVL) straddles the African-South Atlantic continent-ocean boundary and is composed mainly of alkaline basic volcanic rocks. Voluminous silicic volcanics characterize the continental sector of the CVL. We present here new geochemical, isotopic (Sr-Nd-O) and 40Ar/39Ar geochronological data on the main silicic volcanic centres of the Western (Mt. Oku, Sabga and Mt. Bambouto) and Eastern (Ngaoundere plateau) Cameroon Highlands. The silicic volcanism of Mt. Oku, Sabga and Mt. Bambouto occurred between 25 and 15 Ma and is represented by voluminous quartz-normative trachytes and minor rhyolitic ignimbrites. At Mt. Bambouto central volcano about 700 m of silicic volcanics erupted in less than 2.7 million years. These silicic volcanics are associated with slightly to moderately alkaline basalts and minor basanites. In general, onset of the silicic volcanism migrated from NE (Oku: 25 Ma) to SW (Sabga: 23 Ma; Bambouto: 18 Ma; and Mt. Manengouba: 12 Ma). The silicic volcanism of the Ngaoundere plateau (eastern branch of the CVL) is instead dominated by nepheline-normative trachytes which are associated with strongly alkaline basalts and basanitic rocks. These Ne-trachytes are younger (11-9 Ma) than the Q-trachytes of the Western Highlands. The least differentiated silicic volcanics are isotopically similar (87Sr/86Sr < 0.70380; 143Nd/144Nd > 0.51278) to the associated alkaline basalts suggesting differentiation processes without appreciable interaction with crustal materials. Such interactions may, however, have played some role in the genesis of the most evolved silicic volcanics which have 87Sr/86Sr as high as 0.705–0.714. Fractional crystallization is the preferred mechanism for genesis of the silicic melts of both Western and Eastern Highlands, as shown by modeling major and trace element variations. The genesis of the least evolved Q-trachytes from the Western Highlands, starting from slightly to moderately alkaline basalts, is compatible with fractionation of dominantly plagioclase, clinopyroxene and magnetite. Crystal fractionation may have occurred at low pressure and at QFM buffer f O2conditions. Parental magmas of the Ngaoundere Ne-trachytes are likely instead to have been strongly alkaline basalts which evolved through crystal fractionation at higher P (6-2 kbar) and f O2 (QFM + 2). The migration (25 to 12 Ma) of the silicic volcanism from NE to SW in the continental sector of the CVL is reminiscent of that (31-5 Ma) of the onset of the basic volcanism in the oceanic sector (Principe to Pagalu islands) of the CVL. These ages, and that (11-9 Ma) of the silicic volcanism of the Ngaoundere plateau, indicate that the Cameroon Volcanic Line as a whole may not be easily interpreted as the surface expression of hot-spot magmatism. Received: 24 February 1998 / Accepted: 22 September 1998  相似文献   

8.
We present a detailed mineralogical, petrological and melt inclusion study of unusually fresh, primitive olivine + clinopyroxene phyric Lower Pillow Lavas (LPL) found near Analiondas village in the northeastern part of the Troodos ophiolite (Cyprus). Olivine phenocrysts in these primitive LPL show a wide compositional range (Fo82–92) and have higher CaO contents than those from the Upper Pillow Lavas (UPL). Cr-spinel inclusions in olivine are significantly less Cr-rich (Cr/Cr + Al = 28–67 mol%) compared to those from the UPL (Cr# = 70–80). These features reflect differences in melt compositions between primitive LPL and the UPL, namely higher CaO and Al2O3 and lower FeO* compared to the UPL at a given MgO. LPL parental melts (in equilibrium with Fo92) had ∼10.5 wt% MgO and crystallization temperatures ∼1210 °C, which are significantly lower than those previously published for the UPL (14–15 wt% MgO and ∼1300 °C for Fo92). The fractionation path of LPL parental melts is also different from that of the UPL. It is characterized initially by olivine + clinopyroxene cotectic crystallization joined by plagioclase at ∼9 wt% MgO, whereas UPL parental melts experienced a substantial interval of olivine-only crystallization. Primitive LPL melts were formed from a mantle source which was more fertile than that of tholeiites from well-developed intra-oceanic arcs, but broadly similar in its fertility to that of Mid-Ocean Ridge Basalt (MORB) and Back Arc Basin Basalts (BABB). The higher degrees of melting during formation of the LPL primary melts compared to average MORB were caused by the presence of subduction-related components (H2O). Our new data on the LPL coupled with existing data for the UPL support the existing idea that the LPL and UPL primary melts originated from distinct mantle sources, which cannot be related by progressive source depletion. Temperature differences between these sources (∼150 °C), their position in the mantle (∼10 kbar for the colder LPL source vs 15–18 kbar for the UPL source), and temporal succession of Troodos volcanism, all cannot be reconciled in the framework of existing models of mantle wedge processes, thermal structure and evolution, if a single mantle source is invoked. Possible tectonic settings for the origin of the Troodos ophiolite (forearc regions of intra-oceanic island arc, propagation of backarc spreading into arc lithosphere) are discussed. Received: 20 May 1996 / Accepted: 25 March 1997  相似文献   

9.
Summary A suite of clinopyroxene and amphibole megacrysts and mafic–ultramafic xenoliths are present in ignimbritic rocks of trachybasaltic–andesitic composition from the Sirwa volcanic district, Morocco. The stumpy prismatic and sometimes euhedral clinopyroxene megacrysts are Ti–Al-rich diopsides with mg values in the range 0.82–0.87 and Ca/(Ca + Mg) ratios in the range 0.53–0.54. The prismatic, elongated amphibole megacrysts are calcic kaersutites–kaersutites with a narrow mg range (0.66–0.68). The xenoliths are represented by gabbroic and pyroxenitic types. In the gabbroic xenoliths two distinct textural types can be distinguished: medium-sized granular and banded. The granular type is characterized by the mineral assemblage Pl + Amph + Spl + Ilm + Ap. The banded type is distinct for the absence of Ilm and the presence of Cpx and Opx and shows alternating bands enriched in Pl and Amph, respectively. The megacrysts and, probably, the xenoliths are considered not cognate with the present host rocks since the calculated liquids in equilibrium with clinopyroxene and amphibole megacrysts over a wide range of physical conditions have different trace and rare earth element contents. The observed phase relations and thermobarometric calculations indicate that the megacrysts and xenoliths crystallized from their parent melts at P ≥ 10 kbar and T ≤ 1160 °C, i.e., in the upper mantle or near the crust-mantle boundary. A deep ( ≥ 30 km) magmatic chamber, where the megacrysts and xenoliths originated, and a shallow volcanic chamber, energetically activated up to explosive conditions by injection of deep-originated melts, is suggested to explain the occurrence of high-pressure megacrysts and xenoliths in the Sirwa volcanic explosive products. Received October 8, 2000; revised version accepted September 9, 2001  相似文献   

10.
Summary Abundant upper mantle and rare lower crustal xenoliths have been found in the Plio-Pleistocene alkali basalts of the Nógrád-G?m?r Volcanic Field, situated in the northern Pannonian Basin, on the border between northern Hungary and southern Slovakia. A few lower crustal granulite xenoliths have been found in a small basaltic pyroclastic cone at Baglyaskő. The mafic granulite xenoliths are plagioclase-bearing hornblende clinopyroxenites, plagioclase-bearing clinopyroxene hornblendites and plagioclase-bearing clinopyroxenites. They contain unusual symplectites, composed of spinel feldspar and clinopyroxene. These symplectites are interpreted as the product of garnet breakdown. Following the breakdown reaction, the symplectite underwent in situ partial melting. Mineral constituents of these granulite xenoliths have chemical compositions similar to those of other granulite xenoliths worldwide. However, a distinctive positive Pb and Ce anomaly in mineral constituents of these granulites is characteristic. Granulite xenoliths from the Nógrád-G?m?r Volcanic Field must have experienced granulite facies metamorphism at pressures that correspond to the ‘original’ thickness of the crust (>1.1 GPa; >∼30 km), whereas the breakdown reaction of garnet and subsequent melting and recrystallization of clinopyroxenes in the symplectites happened at shallower depths close to the present-day MOHO (0.6–0.7 GPa; ∼16–19 km). Present address: Research School of Earth Sciences, Australian National University, Australia  相似文献   

11.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

12.
We have measured the δ18O values of the major phenocrysts (olivine, clinopyroxene and plagioclase) present in lavas from Tristan da Cunha and Gough Island. These islands, which result from the same mantle plume, have enriched radiogenic isotope ratios and are, therefore, prime candidates for an oxygen isotope signature that is distinct from that of MORB. Consistent differences between the δ18O values of olivine, pyroxene and feldspar in the Gough lavas show that the phenocrysts in the mafic Gough Island lavas are in oxygen isotope equilibrium. The olivines in lavas with SiO2 <50 wt% have a mean δ18O value of 5.19‰, consistent with crystallization from a magma having the same oxygen isotope composition as MORB. Phenocrysts in all the Gough lavas show a systematic increase in δ18O value as silica content increases, which is consistent with closed-system fractional crystallization. The lack of enrichment in δ18O of the Gough magmas suggests that the mantle source contained <2% recycled sediment. In contrast, the Tristan lavas with SiO2 >48 wt% contain phenocrysts which have δ18O values that are systematically ∼0.3‰ lower than their counterparts from Gough. We suggest that the parental mafic Tristan magmas were contaminated by material from the volcanic edifice that acquired low δ18O values by interaction with water at high temperatures. The highly porphyritic SiO2-poor lavas show a negative correlation between olivine δ18O value and whole-rock silica content rather than the expected positive correlation. The minimum δ18O value occurs at an SiO2 content of about 45 wt%. Below 45 wt% SiO2, magmas evolved via a combination of assimilation, fractionational crystallization and crystal accumulation; above 45 wt% SiO2, magmas appeared to have evolved via closed-system fractional crystallization. Received: 23 November 1998 / Accepted: 27 September 1999  相似文献   

13.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

14.
Summary Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rh?nite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths. Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts. Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle. Received November 23, 1999; revised version accepted September 5, 2001  相似文献   

15.
Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702‐1 to OT0702‐10) containing volcanic tephra have been recognised throughout the 14.94 m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702‐4, OT0702‐6, OT0702‐8 and OT0702‐9), while the remaining six are cryptotephras (OT0702‐1, OT0702‐2, OT0702‐3, OT0702‐5, OT0702‐7 and OT0702‐10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702‐1 to AD 472 or AD 512 eruptions of Somma‐Vesuvius, OT0702‐2 to the FL eruption of Mount Etna, OT0702‐3 to the Mercato from Somma‐Vesuvius, OT0702‐4 to SMP1‐e/Y‐3 eruption from the Campi Flegrei caldera, OT0702‐5 to the Codola eruption (Somma‐Vesuvius or Campi Flegrei), OT0702‐6 to the Campanian Ignimbrite/Y‐5 from the Campi Flegrei caldera, OT0702‐7 to the Green Tuff/Y‐6 eruption from Pantelleria Island, OT0702‐8 to the X‐5 eruption probably originating from the Campi Flegrei caldera, OT0702‐9 to the X‐6 eruption of generic Campanian origin, and OT0702‐10 to the P‐11 eruption from Pantelleria Island. The fairly well‐known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The composition and thermal evolution of the upper mantle lithosphere beneath the central Archean Slave Province has been studied using mineral chemical and petrographic data from mantle xenoliths entrained in the Torrie kimberlite pipe. Coarse-, granuloblastic-, and porphyroclastic- textured harzburgite, lherzolite, and pyroxenite xenoliths yield equilibration temperatures ranging between 850 and 1350 °C. Thermobarometry of these samples requires a minimum lithospheric thickness of approximately 180 km at the time of kimberlite magmatism. The distribution of pressures and temperatures of equilibration for the xenoliths lie on a calculated 42 mWm−2 paleogeotherm, ∼10 mWm−2 lower than the present heat flow measured at Yellowknife, near the SW margin of the Slave Province. The Mg# [Mg/(Mg + Fe)] of olivine in peridotites varies between 0.906 and 0.938 with an average of 0.920. The Torrie xenolith suite shows variable degrees of serpentinization and/or carbonation with the rim compositions of many clinopyroxene grains showing Ca enrichment, but in general, the xenoliths are homogeneous at all scales. The Torrie xenoliths are rich in orthopyroxene similar to low temperature (<1100 °C) peridotites from southern Africa, and Siberia. Estimates of bulk rock composition based on mineral chemical and modal data reveal a negative correlation between Si and Fe, similar to peridotite xenoliths from Udachnaya. The similarity of olivine Mg#s with other cratons combined with the negative correlation of Fe and Si suggest that the lithosphere beneath the Slave craton has experienced a evolution similar to other cratons globally. Received: 22 January 1998 / Accepted: 27 August 1998  相似文献   

17.
Gabbroic and ultramafic xenoliths and olivine and clinopyroxene phenocrysts in basaltic rocks from Gran Canaria, La Palma, El Hierro, Lanzarote and La Gomera (Canary Islands) contain abundant CO2-dominated fluid inclusions. Inclusion densities are strikingly similar on a regional scale. Histogram maxima correspond to one or more of the following pressures: (1) minimum 0.55 to 1.0 GPa (within the upper mantle); (2) between 0.2 and 0.4 GPa (the Moho or the lower crust); (3) at about 0.1 GPa (upper crust). Fluid inclusions in several rocks show a bimodal density distribution, the lower-density maximum comprising both texturally early and late inclusions. This is taken as evidence for an incomplete resetting of inclusion densities, and simultaneous formation of young inclusions, at well-defined magma stagnation levels. For Gran Canaria, pressure estimates for early inclusions in harzburgite and dunite xenoliths and olivine phenocrysts in the host basanites overlap at 0.9 to 1.0 GPa, indicating that such magma reservoir depths coincide with levels of xenolith entrainment into the magmas. Magma chamber pressures within the mantle, inferred to represent levels of mantle xenolith entrainment, are 0.65–0.95 GPa for El Hierro, 0.60–0.68 GPa for La Palma, and 0.55–0.75 GPa for Lanzarote. The highest-density fluid inclusions in many Canary Island mantle xenoliths have probably survived in-situ near-isobaric heating at the depth of xenolith entrainment. Inclusion data from all islands indicate ponding of basaltic magmas at Moho or lower crustal depths, and possibly at an additional higher level, strongly suggestive of two main crustal accumulation levels beneath each island. We emphasize that repeated magmatic underplating of primitive magmas, and therefore intrusive accretion, are important growth mechanisms for the Canary Islands, and by analogy, for other ocean islands. Comparable fluid inclusion data from primitive rocks in other tectonic settings, including Iceland, Etna and continental rift systems (Hungary, South Norway), indicate that magma accumulation close to Moho depths shortly before eruption is not, however, restricted to oceanic intraplate volcanoes. Lower crustal ponding and crystallization prior to eruption may be the rule rather than the exception, independent of the tectonic setting. Received: 30 May 1997 / Accepted: 6 February 1998  相似文献   

18.
Primary carbonates in peridotite xenoliths from the East African Rift in northeastern Tanzania occur as intergranular patches with accessory minerals (olivine and spinel), as patches with accessory magmatic minerals (nepheline), and as round monomineralic inclusions in primary olivine grains. All are characterized by calcitic compositions (Ca/Ca + Mg + Fe from 0.83 to 0.99), extremely low SiO2 + Al2O3 + Na2O + K2O, low trace element abundance [total rare-earth element (REE) abundance <25 ppm], uniform extinction, and lack of reaction textures with the host xenolith. Calculated Fe–Mg exchange coefficients between carbonate and primary olivine indicate disequilibrium in most samples. Combined with the lack of significant reaction textures, this suggests that the carbonates were introduced shortly before or during eruption of the host magma. A global compilation of electron microprobe analyses of mantle-derived carbonates (in xenoliths, xenocrysts, and megacrysts) reveals compositional clusters near end member calcite, end member magnesite, and stoichiometric dolomite. Eutectic liquid compositions are less common, suggesting that many carbonate inclusions reported worldwide may be crystalline precipitates. Likewise, the calcites in this study are not interpreted to represent quenched carbonatitic melts, but are interpreted instead to be crystalline cumulates from such melts. These inferences are consistent with recent experiments, which show that carbonatitic melts cannot become more calcitic than CaCO3∼80 wt%. Low trace element abundance may be a diagnostic feature of cumulate carbonate, and in combination with petrography and major element composition, serve to distinguish it from quenched carbonated liquid. Received: 30 July 1999 / Accepted: 5 February 2000  相似文献   

19.
Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.  相似文献   

20.
The mineral chemistry, major and trace element, and Sr–Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ɛNd (+3.0 to +6.6), indicating recent trace element enrichment (∼25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phlogopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr–Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of “intraplate-type” carbonatite metasomatism in an active continental backarc setting. Received: 26 January 2000 / Accepted: 1 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号