首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of supernova remnants (SNRs) across the electromagnetic spectrum from radio up to very high energy gamma-rays can serve as a test of the particle acceleration and touches on one of the unresolved problems of modern astrophysics, namely the origin of cosmic rays and the Galaxy's contribution to the overall cosmic ray spectrum. The multiwavelength observations of Cas A SNR demonstrated that structure and spectral features have clear signs of young SNRs and its overall properties make this object the best target to test a hypothesis of cosmic ray origin in SNRs. Studies of Cas A at very high energies by SHALON telescope showed the location of TeV gamma-ray emission region relative to the position of reveres shock. Also, the spectral energy distribution was obtained at high and very high energies. To describe the spectral and structural features of this SNR viewed in non-thermal emission, two approaches involving reverse and also both reverse and forward shocks to the mechanism of diffusive shock acceleration of cosmic rays in Cas A were applied. It is demonstrated that the observational properties of Cas A are well reproduced by the hadronic model with significant contribution of both the forward and reverse shocks in the generation of broadband emission. Calculation results suggest that the very high efficiency of particle acceleration in Cas A, which value is up to 25% of the supernova explosion energy with energy of accelerated particles not exceeding of eV. Whereas, the forward shock model predicts the spectral characteristics of the TeV-gamma-emission corresponding to ones detected at 800 GeV–40 TeV that are the evidence of acceleration of the hadronic cosmic rays in shells of SNRs up to eV  相似文献   

2.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.  相似文献   

3.
It has been known for over 50 years that the radio emission from shell supernova remnants (SNRs) indicates the presence of electrons with energies in the GeV range emitting synchrotron radiation. The discovery of nonthermal X-ray emission from supernova remnants is now 30 years old, and its interpretation as the extension of the radio synchrotron spectrum requires electrons with energies of up to 100 TeV. SNRs are now detected at GeV and TeV photon energies as well. Strong suggestions of the presence of energetic ions exist, but conclusive evidence remains elusive. Several arguments suggest that magnetic fields in SNRs are amplified by orders of magnitude from their values in the ambient interstellar medium. Supernova remnants are thus an excellent laboratory in which to study processes taking place in very high Mach-number shocks. I review the observations of high-energy emission from SNRs, and the theoretical framework in which those observations are interpreted.  相似文献   

4.
Synchrotron X-rays can be a useful tool to investigate electron acceleration at young supernova remnants(SNRs).At present,since the magnetic field configuration around the shocks of SNRs is uncertain,it is not clear whether electron acceleration is limited by SNR age,synchrotron cooling,or even escape from the acceleration region.We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy.We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age,synchrotron cooling and escape from the shock.They are related to the energy dependence of the electron diffusion coefficient.Next,we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands.We find that if the power-law index of the electron spectrum is independently determined by other observations,then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H.Such study is helpful in understanding the acceleration mechanism.In particular,it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.  相似文献   

5.
Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.  相似文献   

6.
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class – SN 1006, RX J1713.72−3946, Vela Jr and others – that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50 per cent. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this 'twinkling' polarized X-ray emission of SNRs depend strongly on the magnetic field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic field characteristics and high-energy particle acceleration in SNRs.  相似文献   

7.
Supernova remnants (SNRs) are among the most important targets for γ-ray observatories. Being prominent non-thermal sources, they are very likely responsible for the acceleration of the bulk of Galactic cosmic rays (CRs). To firmly establish the SNR paradigm for the origin of cosmic rays, it should be confirmed that protons are indeed accelerated in, and released from, SNRs with the appropriate flux and spectrum. This can be done by detailed theoretical models which account for microphysics of acceleration and various radiation processes of hadrons and leptons. The current generation of Cherenkov telescopes has insufficient sensitivity to constrain theoretical models. A new facility, the Cherenkov Telescope Array (CTA), will have superior capabilities and may finally resolve this long standing issue of high-energy astrophysics. We want to assess the capabilities of CTA to reveal the physics of various types of SNRs in the initial 2000 years of their evolution. During this time, the efficiency to accelerate cosmic rays is highest. We perform time-dependent simulations of the hydrodynamics, the magnetic fields, the cosmic-ray acceleration, and the non-thermal emission for type Ia, Ic and IIP SNRs. We calculate the CTA response to the γ-ray emission from these SNRs for various ages and distances, and we perform a realistic analysis of the simulated data. We derive distance limits for the detectability and resolvability of these SNR types at several ages. We test the ability of CTA to reconstruct their morphological and spectral parameters as a function of their distance. Finally, we estimate how well CTA data will constrain the theoretical models.  相似文献   

8.
In this paper, we discuss known discrepancies between theoretically derived and empirically measured relations between the radio surface brightness Σ and the diameter D of supernova remnants (SNRs): these relations are commonly known as the ΣD relations. We argue that these discrepancies may be at least partially explained by taking into account thermal emission at radio frequencies from SNRs at particular evolutionary stages and located in particular environments. The major contributions of this paper may be summarized as follows: (i) we consider thermal emission at radio frequencies from SNRs in the following scenarios: a relatively young SNR evolving in a dense molecular cloud environment (n  100–1000 cm−3) and an extremely evolved SNR expanding in a dense warm medium (n  1–10 cm−3). Both of these SNRs are assumed to be in the adiabatic phase of evolution. We develop models of the radio emission from both of these types of SNRs and each of these models demonstrate that through the thermal bremsstrahlung process significant thermal emission at radio frequencies is expected from both types of SNR. Based on a literature search, we claim that thermal absorption or emission at radio frequencies has been detected for one evolved Galactic SNR and four young Galactic SNRs with similar properties to our modelled evolved and young SNRs. (ii) We construct artificial radio spectra for both of these two types of SNRs: in particular, we discuss our simulated spectrum for the evolved Galactic SNR OA 184. By including thermal emission in our simulated spectra, we obtain different slopes in ΣD relations: these new slopes are in closer agreement to empirically obtained relations than the theoretically derived relations which do not take thermal emission into account. (iii) Lastly, we present an additional modification to the theoretical ΣD relation for SNRs in the adiabatic expansion phase. This modification is based on the convolution of the synchrotron emissivity with the emissivity derived in this paper for thermal bremsstrahlung emission from an ionized gas cloud (that is, a theoretical construct of an SNR).  相似文献   

9.
In this article we use 1420 MHz data to demonstrate the likely reality of Galactic radio Loops V and VI. We further estimate distances and spectral indices for both these and the four main radio loops. In the cases of Loops I–IV, radio spectral indices are calculated from the mean brightnesses at 1420 and 820/404 MHz. The spectral indices of Loops V and VI are obtained from TT plots between 1420 and 408 MHz. Using the supernova remnant (SNR) hypothesis for the origin of radio loops, distances are calculated from the surface brightnesses and the angular diameters at 1420 MHz. We also study how results for brightnesses and distances of radio loops agree with current theories of SNR evolution. For this purpose, the ambient density and initial explosion energy of the loops are discussed. We also discuss applications of different Σ–D relations. The results obtained confirm a non‐thermal origin and nearby locations for the Galactic radio loops. Therefore, we have indications that they are very old SNRs that evolve in low ambient densities, with high initial explosion energies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
For the case of Tycho’s supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E sn=1.2×1051 erg of the SN explosion energy this also confirms our previous conclusion that a TeV γ-ray flux of (2–5)×10−13 erg/(cm2 s) is to be expected from Tycho’s SNR. Chandra measurements and the HEGRA upper limit of the TeV γ-ray flux together limit the source distance d to 3.3≤d≤4 kpc.  相似文献   

12.
从所有已被提出和发现的230多颗超新星遗迹和1300多颗脉冲星中,总结出一个共50对脉冲星与超新星遗迹成协候选体的样本.其中至少20对因为环绕脉冲星的脉冲星风云已被探测到,其成协性应该是真实的。结合近来的观测结果,对导致这种成协对缺失现象的各种因素进行了讨论,尤其深入地讨论了这个样本中有代表性的3个很可能成协的脉冲星与超新星遗迹对。  相似文献   

13.
This paper represents the updated empirical Galactic andextragalactic Σ-D relations (relations between the surface brightness Σ and the diameter D) for supernova remnants(SNRs), with checking the connection of the main Galactic radio loops (Loop I, II, III and IV) with these relations. We present results which suggest, once again, that the radio loops may have an SNR origin. The updated relations for old SNRs have been measured to have slopes, β ≈ 2 in log-log space. The best Σ-D relations for M31 and M33 galaxies were derived and these relations are shown to be flatter (β ≲2) than those for Galactic SNRs alone. A Σ-D relation with168 reliable calibrators (both Galactic and extragalactic) is derived. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Since supernova remnants (SNRs) are believed to be the primary sources of Galactic cosmic rays (CRs), their distribution in galaxies is an important basis for modelling and understanding the distribution of the CRs and their γ-ray spectrum. We analysed the radial surface density of X-ray and radio selected SNRs in the Large Magellanic Cloud (LMC) and M 33. Both in X-rays and in radio, the surface densities of the SNRs are in excellent agreement in both galaxies, showing an exponential decay in radius. The results were compared to the SNR distribution in the spiral galaxies M 31 and NGC 6946 as well. The radial scale length of the distribution is $\frac{1} {4} $ ? $\frac{1} {3} $ of the radius of the galaxies, fully consistent with values derived for the Milky Way, the LMC, and M 33. Therefore, not only the radio SNRs, but also the X-ray detected SNR sample can be interpreted to be representative for the CR sources within a galaxy.  相似文献   

15.
Radiation-driven winds of hot, massive stars showvariability in UV and optical line profiles on time scales of hours to days.Shock heating of wind material is indicated by the observed X-ray emission. We present time-dependent hydrodynamical models of these winds, where flowstructures originate from a strong instability of the radiative driving. Recent calculations (Owocki 1992) of the unstable growth of perturbations were restricted by the assumptions of 1-D spherical symmetry and isothermality of the wind. We drop the latter assumption and include the energy transfer in the wind. This leads to a severe numerical shortcoming, whereby all radiative cooling zones collapse and the shocks become isothermal again. We propose a method to hinder this collapse. Calculations for dense supergiant winds then show: (1) The wind consists of a sequence of narrow and dense shells, which are enclosed by strong reverse shocks (with temperatures of 106 to 107 K) on their starward facing side. (2) Collisions of shells are frequent up to 6 to 7 stellar radii. (3) Radiative cooling is efficient only up to 4 to 6R *. Beyond these radii, cooling zones behind shocks become broad and alter the wind structure drastically: all reverse shocks disappear, leaving regions ofpreviously heated gas.  相似文献   

16.
The Parkes–MIT–NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz (λ=6 cm). We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to δ=−65°) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to δ=+64°) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the currently 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. Direct comparison of our new fluxes with independent literature values gives excellent overall agreement. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5 to 9 Jy, a slight decline and a further flat distribution from 9 to 20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious ΣD (radio surface brightness–SNRs diameter) relation to determine a new power law index for a sub-sample of shell type SNRs which yields β=−2.2±0.6. This new evaluation of the ΣD relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7–11 kpc with most restricted to ±100 pc Galactic scale height.  相似文献   

17.
The irregular galaxy M82 is known as the archetypal starburst galaxy. Its proximity (3.5 Mpc) makes this galaxy an ideal laboratory for studying the properties of its starburst. The detailed morphology of the [FeII] 1.644 μm and emission Paα (at 1.87 μm) is revealed by the NICMOS images. The peak of the 2.2 μm continuum brightness(evolved population) lies very close to the dynamical centre. Most of the Paα emission (which traces the young population) is distributed in a ring of star formation (with a `hole' lacking line emission at the centre of the galaxy). These observations support the scenario in which the starburst in M82 is propagating outwards. It has long been suggested that the [FeII] emission in starburst galaxies can be used as a measure of supernova (SN) activity. M82 shows a large number of radio supernova remnants (SNRs), approximately 50, lying in the plane of the galaxy. The comparison of the positions of the bright compact [FeII] emitting regions with the location of the radio SNRs shows that there is no one-to-one spatial correspondence between the two emissions, suggesting that the radio and [FeII] emissions trace two populations of SNRs with different ages. Young (a few hundred years) SNRs are best traced by their radio emission, whereas the [FeII] stage lasts for at least a few 104 yr. The compact [FeII] sources contribute only some 20 % of the total [FeII] emission observed in M82. However, much of the remaining unresolved [FeII] emission in the plane of the galaxy may arise from SNRs that expanded and merged into a general interstellar medium within a few 104 yr. Presumably, as much as 70% of the total extinction-corrected [FeII]1.644 μm in M82 is associated with SNRs. The extended and diffuse [FeII] component in M82 seems to be related with the superwind above and below the disc of the galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Whang  Y.C.  Burlaga  L.F.  Ness  N.F.  Smith  C.W. 《Solar physics》2001,204(1-2):253-263
Near 1 AU the solar wind structure associated with the solar flare of 14 July 2000 (Bastille Day) consisted of a large high-speed stream of 15 July and five nearby small streams during a 10-day period. At the leading edge of the large high-speed stream, in less than 6 hours, the flow speed increased from 600 km s−1 to 1100 km s−1, the magnetic field intensity increased from 10 nT to 60 nT, and an interaction region was identified. The interaction region was bounded between the pair of a forward shock F and a reverse shock R. Additional forward shocks were also identified at the leading edge of each of the five smaller streams. This paper presents a magnetohydrodynamics (MHD) simulation using ACE plasma and magnetic field data near 1 AU as input to study the radial evolution of the Bastille Day solar wind event. The two shocks, F and R, propagated in opposite directions away from each other in the solar wind frame and interacted with neighboring shocks and streams; the spatial and temporal extent of the interaction region continued to increase with the heliocentric distance. The solar wind was restructured from a series of streams at 1 AU to a huge merged interaction region (MIR) extending over a period of 12 days at 5.5 AU. Throughout the interior of the MIR bounded by the shock pair F and R the magnetic field intensity was a few times stronger than that outside the MIR. The simulation shows how merging of shocks, collision of shocks, and formation of new shocks contributed to the evolution process.  相似文献   

19.
Supernova Remnants (SNRs) are the most likely sources of the galactic cosmic rays up to energies of about 1015 eV/nuc. The large scale shock waves of SNRs are almost ideal sites to accelerate particles up to these highly non-thermal energies by a first order Fermi mechanism which operates through scattering of the particles at magnetic irregularities. In order to get an estimate on the total amount of the explosion energy E SNconverted into high energy particles the evolution of a SNR has to be followed up to the final merging with the interstellar medium. This can only be done by numerical simulations since the non-linear modifications of the shock wave due to particle acceleration as well as radiative cooling processes at later SNR stages have to be considered in such investigations. Based on a large sample of numerical evolution calculations performed for different ambient densities n ext, SN explosion energies, magnetic fields etc. we discuss the final ‘yields’ of cosmic rays at the final SNR stage where the Mach number of the shock waves drops below 2. At these times the cosmic rays start to diffuse out of the remnant. In the range of external densities of10-2n ext/[cm-3] ≤ 30 we find a the total acceleration efficiency of about 0.15 E SN with an increase up to 0.24 E SN at maximum for an external density of n ext = 10 cm-3. Since for the larger ambient densities radiative cooling can reduce significantly the total thermal energy content of the remnant dissipation of Alfvén waves can provide an important heating mechanism for the gas at these later stages. From the collisions of the cosmic rays with the thermal plasma neutral pions are generated which decay subsequently into observable γ-rays above 100 MeV. Hence, we calculate these γ-ray luminosities of SNRs and compare them with current upper limits of ground based γ-raytelescopes. The development of dense shells due to cooling of the thermal plasma increases the γ-ray luminosities and e.g. an external density of n ext = 10 cm-3 with E SN = 1051 erg can lead to a γ-ray flux above 10-6 ph cm-2 s-1 for a remnant located at a distance of 1 kpc. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A considerable fraction of Galactic supernova remnants (SNRs) characterize flat spectral indices (α<0.5). There are several explanations of the flat radio spectra of SNRs in the present literature. The most of models involve a significant contribution of the second-order Fermi mechanism but some of them also discuss high compressions (>4), contribution of secondary electrons left over from the decay of charged pions, as well as the possibility of thermal contamination. In the case of expansion in high density environment, intrinsic thermal bremsstrahlung could theoretically shape the radio spectrum of an SNR and also account for observable curved—“concave up” radio spectra of some Galactic SNRs. This model could also shed a light on the question of flat spectral indices determined in some Galactic SNRs. On the other hand, present knowledge of the radio continuum spectra (integrated flux densities at different frequencies) of SNRs prevent definite conclusions about the significance of proposed models so the question on flat spectral indices still remains open. New observations, especially at high radio continuum frequencies, are expected to solve these questions in the near future. Finally, as there is a significant connection between the majority of Galactic SNRs with flat integrated radio spectrum and their detection in γ-rays as well as detection of radiative recombination continua in their X-ray spectra, the analysis of high energy properties of these SNRs is very important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号