首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
I. Genov 《Oceanology》2009,49(4):540-557
A model for the palaeoenvironmental evolution of the Black Sea and its adjacent basins during the past 20.000 years, in which variations in sedimentation, erosion, and hydrologic processes as a result of climatic change are taken into consideration, is developed. The data used include those from five cruises in the Black Sea with the participation of the author, seismo-acoustic data in the possession of the Institute of Oceanology in Varna, and data from the published literature. The most important result is that the water level of the Black Sea is controlled largely by that of the Marmara Sea via the Bosporus sill. The water circulation in the south part of the Bosporus channel as natural regulative mechanism of the Black Sea level during 11800–9000 yr C14 BP is produced. A succession of climatic and water conditions for the Black Sea by pollen analysis is presented. The linear ridges on the Black Sea shelf as result of the lower Holocene regression are proved by means of a stratigraphic interpretation of the seismo-acoustic profiles. The levels of the Black Sea, Marmara Sea, and Mediterranean at regarded intervals of time are presented. An attempt at explanation of maximum number of facts from the study region with this model is made.  相似文献   

2.
The historical Golden Horn Estuary (GHE), near the confluence of the Istanbul Strait (Bosphorus) and the Sea of Marmara in the European part of Istanbul, has been used as a natural harbor since 330 a.d. The sedimentary infill of the GHE is 15–46 m thick, deposited unconformably above the turbiditic sandstones of the Carboniferous Trakya Formation. Chronostratigraphic and paleontological analyses of the infill sequence indicate that the GHE was a fluvial channel prior to 13,500 cal. a (calibrated to calendar years) B.P. It subsequently became gradually influenced by marine waters, and was a brackish-water environment until 9,500 cal. a B.P. Normal marine salinities prevailed at ca. 9,500−5,600 cal. a B.P., with suboxic/dysoxic bottom-water conditions. The increase in salinity at 9,500 cal. a B.P. was most likely caused by Mediterranean water outflow into the Black Sea through the Istanbul Strait. The estuary was influenced by large fluvial inputs between 5,600 and 1,000 cal. a B.P., possibly during a distinct pluvial period, as shown by coarse siliciclastic sediments deposited on the flanks. It has become a highly polluted environment with marked anthropogenic inputs during the last millennium. The finding that the sediment infill sequence above the Carboniferous basement is not older than about 20 ka strongly suggests that the Golden Horn Estuary acquired its present-day morphology during the late glacial–Holocene period.  相似文献   

3.
Many gas seepages, temperature, pressure, salinity, anoxic environment and high source gas potential of the Black Sea indicates that the Black Sea might have huge potentials for biogenic and thermogenic gas hydrates. However, the last important parameter to consider gas hydrate as an energy source is the type of sediments. Coarse marine sands are considered as good hydrate reservoirs because of high porosity and high permeability. Only very limited data is available related to the types of lithology of the Black Sea sediments. Hence, in this study, the literature data (especially the drilling and coring data of DSDP Leg 42B program) about gas seepages, temperature gradient, pressure gradient, salinity, anoxic environment and high source gas potential, and the types of the sediments in the Black Sea were investigated and analyzed. Although gas seepages, temperature gradient, pressure gradient, salinity, anoxic environment and high source gas potential of the Black Sea are appropriate for producible gas hydrate reservoirs, the sediments of the Black Sea appear to be generally fine grained with high clay content. Sandy-silt and silty sand layers in turbidites of the Black Sea might be potential producible hydrate reservoirs but these sediments are fine. As well as turbidites, separate thin sand layers might be potential gas hydrate reservoirs as an energy source in the Black Sea.  相似文献   

4.
《Marine Geology》2005,214(4):309-322
Gravity cores from the continental slope in the northwestern Black Sea were studied using high-resolution stable isotope, grain size and XRF-scanning data. The measurements provide a 30 000 years AMS 14C-dated record of variations in the hydrological regime of the Black Sea and give insight into changing paleoenvironments in the surrounding areas. Stable climatic conditions during the Last Glacial Maximum were followed by a series of meltwater pulses most likely originating from the Scandinavian ice sheet between 18 000 and 15 500 yr BP.1 This meltwater input rose the level of the Caspian Sea to a point that Caspian water could spill into the Black Sea via the Manych-depression north of the Caucasian mountains. High-frequency oscillations in the XRF-data during this period suggest a probable link to the arctic climate regime. Later, during the Bølling/Allerød and the early Holocene, prevailing high temperatures led to authigenic calcite precipitation through increased phytoplankton activity, interrupted by the Younger Dryas and the “8200 yr BP cold event” with dominant clastic sedimentation.  相似文献   

5.
“Zernov’s Phyllophora field” is a unique habitat located in the northwestern Black Sea. At the site, there is a dense stand of agarophytes (red algae) and a high diversity of associated fauna. On November 21 2008, the president of Ukraine (Victor Yuschenko) declared this area a botanical reserve of state-wide importance; it was established to protect and restore a unique natural environment. “Zernov’s Phyllophora field” is the first offshore, fully marine MPA in the Black Sea, and it is the largest. The total area is 402,500 ha, covering 12.5% of the northwestern shelf of the Black Sea. The Ukrainian Scientific Centre for the Ecology of Sea has developed a program for (1) preservation, (2) restoration and (3) further rational use of biological resources at the site. It contains three conforming and interdependent sub-programs that put forward a series of measures for implementing the objectives (preservation, restoration, sustainable resource use).The northwestern Black Sea was heavily impacted by anthropogenic loading in the period 1970–1980, and Zernov’s Phyllophora field was considerably degraded and reduced in area. During recent years the perimeter of the Phyllophora field has slightly extended, and restoration of the benthic phytocoenosis has begun. Assigning this area the status of a marine reserve (Marine Protected Area) will further promote processes of restoring faunal and floristic biodiversity to historically healthy levels.  相似文献   

6.
Rivers are important sources of freshwater and nutrients for the Mediterranean and Black Sea. We present a reconstruction of the spatial and temporal variability of these inputs since the early 1960s, based on a review of available data on water discharge, nutrient concentrations and climatic parameters. Our compilation indicates that Mediterranean rivers suffer from a significant reduction in freshwater discharge, contrary to rivers of the Black Sea, which do not have clear discharge trends. We estimate this reduction to be at least about 20% between 1960 and 2000. It mainly reflects recent climate change, and dam construction may have reduced discharge even further. A similar decrease can also be expected for the fluxes of dissolved silica (Si), strongly controlled by water discharge and potentially reduced by river damming as well. This contrasts with the fluxes of nitrogen (N) and phosphorus (P) in Mediterranean and Black Sea rivers, which were strongly enhanced by anthropogenic sources. Their total inputs to the Mediterranean Sea could have increased by a factor of >5. While N still remained at elevated levels in 2000, P only increased up to the 1980–1990s, and then rapidly dropped down to about the initial values of the 1960s. With respect to the marine primary production that can be supported by the riverine nutrient inputs, Mediterranean and the Black Sea rivers were mostly phosphorus limited during the study period. Their anthropogenic nutrient enrichment could only have had a fertilizing effect before the general decline of the P loads. When also considering Si as a limiting element, which is the case for siliceous primary producers such as diatoms, silica limitation may have become a widespread phenomenon in the Mediterranean rivers since the early 1980s. For the Black Sea rivers, this already started the late 1960s. Gross primary production sustained by rivers (PPR) represents only less than 2% of the gross production (PP) in the Mediterranean, and less than 5% in the Black Sea. Possible ecological impacts of the changing river inputs should therefore be visible only in productive coastal areas, such as the Gulf of Lions, where PPR can reach more than two thirds of PP. Reported ecosystem changes both in the Adriatic Sea and the Black Sea are concomitant with major changes in the reconstructed river inputs. Further work combining modelling and data collection is needed to test whether this may also have been the case for coastal ecosystems at other places in the Mediterranean and Black Sea.  相似文献   

7.
During New Euxinian time when sea level dropped below the sill connecting the Black and Marmara seas, the Black Sea became isolated and freshwater sediments were deposited. Now it is a semieuxinic basin with the oxic/anoxic boundary at 100–150 m. The seasonal changes in sedimentation are preserved in the form of laminated sequences. The counting of varves in southeastern Black Sea cores show the chronology of the O2/H2S interface. The age of the Holocene sapropel along the eastern margin ranges from 4000 to 1000 yr BP in deep water and 2500—1000 yr BP in shallower water. Sapropel formation started at 3650 yr BP at a water depth of 2200 m.  相似文献   

8.
It is often claimed that the Black Sea is one of the most degraded seas in the world. Management to rehabilitate the Black Sea requires cooperation between the coastal countries to be successful. However, regional cooperation in the Black Sea is poorly coordinated and lack concrete outcomes. This article analyses the performance of the Black Sea Commission in terms of enabling and fostering effective regional collaboration between the Black Sea coastal countries. The results indicate that the measures undertaken by the Black Sea Commission are effective in terms of enabling scientific and project based cooperation between the Black Sea countries. The cooperation around regional and national institutional reforms to tackle the Black Sea environmental problems is found to be weak. Despite the existing mechanisms and willingness of countries to cooperate, the implementation of the established strategic action plan for the environmental protection and rehabilitation of the Black Sea is limited. Most of the limitations of the Black Sea Commission's regime are found in its institutional and legal frameworks, which constrain the effectiveness of collaborative efforts of the Black Sea countries. To be fully functional, the collaborative governance regime of the Black Sea Commission has to be improved. Recommendations as to how these may be addressed to enhance the regime's capacity to ensure effective marine collaborative governance in the region are presented in this article.  相似文献   

9.
《Marine Geology》2003,201(4):253-267
A series of simple hydraulic calculations has been performed to examine some of the questions associated with the reconnection of the Black Sea to the Mediterranean through the Turkish Strait System during the Holocene. Ryan et al.’s catastrophic flood scenario, whereby the erosive power of the marine in-fluxes, initiated after eustatic sea level reached the sill depth, opened up the Bosphorus, allowing saline water to pour into the Black Sea and filling it on a short time scale, is examined. The calculations show that although it might be possible to fill the palaeo-Black Sea within the order of a decade, a 1–2 year filling time scale is not physically possible. A hydraulic model is also used to examine the more traditional connection hypothesis of (near-)continuous freshwater outflow from the Black Sea, with a slowly increasing saline inflow from the Mediterranean beginning around 8–9 kyr BP. The model considers two forms for the structure of the Bosphorus: a shallow sill as seen today and a deep sill associated with no sediments filling the 100 m gorge above the bedrock in the strait. Sensitivity experiments with the hydraulic model show what possible strait geometric configurations may lead to the Black Sea reaching its present-day salinity of 18 psu. Salinity transients within the Black Sea are shown as a function of time, providing for values that can be validated against estimates from cores. To consider a deep, non-sediment-filled Bosphorus (100 m deep), the entry of Mediterranean water into the Sea of Marmara after 12.0 kyr BP is examined. A rapid entry of marine water into the Sea of Marmara is only consistent with small freshwater fluxes flowing through the Turkish Strait System, smaller than those of the present day by a factor of at least 4. Such a small freshwater flux would lead to the salinification of the Black Sea being complete by an early date of 10.2–9.6 kyr BP. Thus the possibility of a deep Bosphorus sill should be discounted.  相似文献   

10.
An analysis is given of the methods of operational oceanography based on measurements derived from satellite data, observations acquired by drifters and passing vessels, and modern simulations of marine and oceanic circulations. In addition, a historical review is conducted of the previous and current research in this field carried out in the Soviet Union, Ukraine, and Russia. A discussion is given of the principles underlying the design of an effective data-computing system (DCS) for solving the problems of operational oceanography and the implementation of the prototype system for the Black Sea within the joint research project of the Russian Academy of Sciences (RAS) and the National Academy of Sciences of Ukraine (NASU) “The Black Sea as an Ocean Simulation Model.” The effectiveness of applying the multicomponent splitting method in the construction of sea circulation models and specialized DCSs with integrated algorithms of variational assimilation of observational data is estimated. The concept of using the Black Sea as a testing site for innovations is developed. The underlying idea of the concept is the similarity of the Black Sea dynamics with processes in the oceans. The numerical Black Sea circulation models used in the project are described, their development areas are discussed, and the requirements to a Black Sea observing system are defined.  相似文献   

11.
Seepage of hydrocarbon-rich fluids out of the marine sedimentary column is characterized by temporal changes of flow intensity and resultant spatially variable redox conditions. Authigenic carbonates at marine hydrocarbon seeps provide excellent geological and geochemical archives that serve to explore seepage dynamics over time. In this study, we investigated the potential of Mössbuaer spectroscopy and Fe contents of seep-related authigenic carbonates from the Congo Fan, the Gulf of Mexico, and the Black Sea for reconstructing past redox conditions and fluid seepage activity at cold seeps. The Fe speciation observed by Mössbauer spectroscopy and Fe contents suggest that (1) the Congo Fan carbonates precipitated in a sulfidic environment, (2) the formation conditions of seep carbonates were variable at the Gulf of Mexico seep site, ranging from oxic to suboxic and anoxic and even spanning into the methanogenic zone, and (3) the stratified water column of the Black Sea or suboxic condition resulted in low Fe contents of Black Sea carbonates. The study reveals that Fe speciation can provide constraints on the wide range of redox conditions that imprinted seep carbonates during the life span of seepage. Similarly, Mössbauer spectroscopy – particularly when used in combination with the analysis of redox-sensitive elements – is a promising tool to trace variable redox conditions in marine paleoenvironments other than seeps.  相似文献   

12.
Accumulation rates of (marine) organic carbon and estimates of paleoproductivity from organic carbon data indicate distinct late Quaternary glacial/interglacial cycles at Ocean Drilling Program (ODP) Site 646. During the last 240,000 years, surface-water productivity was significantly higher in the northern Labrador Sea during interglacial than during glacial times (70 to 170 gC/m2/yr vs. 30 to 70 gC/m2/yr). The reduced glacial productivity is probably caused by a closed sea-ice cover dominating the northern Labrador Sea during glacial intervals.  相似文献   

13.
The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the “Noah’s Flood” hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene–Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline–lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a TurritellaCorbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline–polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and phases of increased/decreased ventilation in the Marmara Sea during the Holocene, as well as palaeobiogeographic reorganisations of Ponto-Caspian and Mediterranean water bodies since the latest Pleistocene (<30 ka). The findings contribute to arguments against a single catastrophic flooding of the Black Sea at about 7.5 ka (Noah’s Flood).  相似文献   

14.
As part of the Russian-Ukrainian program “The Black Sea as a Simulation Model of the Ocean,” the monitoring of the marine environment is considered using modern measuring systems. On the basis of historical and contemporary observation data, we estimate the spatial and temporal scales of dominant processes in the Black Sea. We describe the main measuring systems used to monitor the structure and variability of the hydrophysical fields. Examples characterizing the specific features of the Black Sea processes are presented.  相似文献   

15.
Until recently, the ideas about the age of the Black Sea deep-water basin have been based on land geological observations in the coastal areas at the interaction periphery, underwater observations from manned submersibles, and on the data of seismic reflection and refraction studies and drilling. Formerly, the scarcity of the information led to a wide scattering of the age determinations: from the Jurassic to the Eocene. Recently, with the appearance of reliable geological and geophysical data, the range of the age estimates has been considerably reduced during the last few years, although there is no commonly accepted opinion on this issue. Therefore, the first attempt to determine the age of the Western Black Sea basin using an analysis of the anomalous magnetic field is of certain interest. The following results were obtained: the basin probably opened between 71.338 and 71.587 My B.P. (subchron C32n.1r). During the interval 68.737–71.071 My B.P. (subchron C31r), extinction of the spreading axes took place. Thus, the total duration of the Campanian-Maestrichtian phase of the opening was about 3 My (interval from 71.587 to 68.737 My B.P.). This result does not agree with the geological and geophysical data available to date. To solve this problem, collection of new geological data and further studies of the structure of the anomalous magnetic field are required.  相似文献   

16.
The automatic system of operational forecasting of the Black Sea state which functions at the Marine Hydrophysical Institute is presented. Principles of the system construction are considered; the marine environment models used for forecasting, the data streams required for the system functioning, and tools for validating and visualizing the results of sea-state calculations are described. Some examples of investigating a number of processes and phenomena in the Black Sea are given.  相似文献   

17.
Analysis of high-resolution seismic reflection profiles and sediment samples has revealed the evolution and sediment budget of the southeastern Yellow Sea mud belt (SEYSM) along the southwestern Korean Peninsula. The SEYSM, up to 50 m thick, over 250 km long and 20–55 km wide, can be divided into three stratigraphic units (A1, A2, and B, from oldest to youngest). Unit A1, overlying the acoustic basement, comprises the northern part of the SEYSM. Unit A2 comprises the southern part of the SEYSM; much of unit A2 is exposed at the seafloor. Unit B completely covers unit A1 and pinches out southward.

14C data suggest that evolution of each unit is closely related to the postglacial sea-level changes. Unit A1 consists of estuarine/deltaic or shallow-water muds deposited during the early to middle stage of postglacial sea-level rise (ca. 14,000–7000 yr B.P.). Unit A2 corresponds to relict muds deposited during the last, deceleration stage of sea-level rise (ca. 7000–3.500 yr B.P.). Unit B consists of shelf muds deposited during the recent sea-level highstand (ca. <3500 yr B.P.).

Very low background activities of 210Pb of the surface sediment of unit A2 suggest that the present-day sediment accumulation is negligible in the southern SEYSM. On the other hand, 210Pb excess activity profiles in unit B yield an average sediment accumulation rate of 3.9 mm/yr, indicating active sediment accumulation in the northern SEYSM. The annual sink (3.0×107 tons/yr) of fine-grained sediment in unit B is about an order of magnitude greater than can be explained by the sediment input from the Korean rivers alone. We propose that reworking of unit A2 has provided large volumes of muds to unit B, resulting in excessive sediment accumulation in the northern SEYSM. Much of unit A2, in turn, is likely to have originated from erosion of unit A1 in the north. This rather unique erosional/depositional regime of the SEYSM is probably owing to the tidal and regional currents characteristic in the southeastern Yellow Sea.  相似文献   


18.
Using an interdisciplinary three-dimensional physical and biogeochemical model developed for the Black Sea, the long-term evolution of marine dynamics and ecosystem is investigated. The hydrophysical fields were calculated from a model of Black Sea circulation with assimilation of hydrographic survey and satellite measurement data from 1971 to 2001. The circulation model reproduces well processes of various scales in both space and time (particularly the seasonal course and interannual variability of main hydrophysical fields). The resulting flow fields are then used to calculate the long-term evolution of the components of the lower level of the food chain in the Black Sea ecosystem. The biogeochemical model used in the calculations is based on the nitrogen cycle and includes a parameterization of the main biological and chemical interactions and processes in the upper layer of the Black Sea. The numerical experiments indicated that the biogeochemical component of the model rather successfully reproduces the main features and evolution trends in the Black Sea ecosystem for the period under consideration: the growth in the phytoplankton biomass during eutrophication and changes in seasonal cycles of the main ecosystem components. Also, the hydrophysical processes were shown to be important for a reliable reproduction of long-term changes in the ecosystem.  相似文献   

19.
本文根据我们的调查和前人的工作,对六股河口附近砂积体加以记述,进而探讨辽西沿岸全新世海水入侵趋势。 一、区域概况 六股河口位于绥中和兴城县交界处(图2),发源于松岭山脉,主流长110公里,流域面积为3000平方公里。多年平均最大径流量为16.67  相似文献   

20.
The identification of past connection routes between the Black Sea and the Sea of Marmara, other than the traditional one through to the Bosphorus Strait, would be of considerable interest to the international scientific community. Nazik et al. (Geo-Mar Lett 31:75?C86 (2011) doi:10.1007/s00367-010-0216-9) suggest the possibility of two alternative waterway connections via lakes Sapanca and ?znik. Their Black Sea to Sea of Marmara multi-connection hypothesis, which is based on undated marine fossils collected in both lakes from surficial grab samples, conflicts with many earlier studies. In this contribution, the hypothesis and the underlying data are discussed in the light of previous tectonic, sedimentological and limnological findings showing that it is impossible to have had marine connections through lakes Sapanca and ?znik during the last 11.5?ka. Global sea-level trends and tectonic uplift rates would accommodate a connection between the Sea of Marmara and Lake ?znik in the middle Pleistocene. Uplift rates for the northern block of the North Anatolian Fault, when compared with the global sea-level curve, clearly indicate that there cannot have been a connection through the ?zmit Gulf?CLake Sapanca?CSakarya Valley for at least the past 500?ka. Moreover, borehole sediments along the western shores of Lake Sapanca, which reach down to the bedrock, do not contain any marine fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号