首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
Abstract This, the second of two papers, represents the application of a least squares approach, discussed in the previous paper, to the generation of an internally consistent thermodynamic dataset involving 60 reactions among 43 phases, in the system K2O–Na2O–CaO–MgO–Al2O3–SiO2–H2O–CO2. We make the assumption that all the thermodynamic data, with the exception of enthalpies of formation of the phases, are well known, and solve for an internally consistent set of enthalpies which reproduces the 60, experimentally determined, phase equilibrium reactions. An important difference between our dataset and that of previous alternatives in the literature is that we are able to determine the uncertainties on, and correlations between, the enthalpies of formation for all phases in the set, and hence are able to apply simple error propagation techniques to determine the uncertainties in any phase equilibrium calculations performed using this dataset. Selection of reactions, for geothermometry and geobarometry, may be more readily made by choosing equilibria with small uncertainties in their thermodynamics. Our data are in reasonably close agreement with the high temperature molten oxide calorimetry results on silicate minerals where available, a fact which lends a degree of confidence to the results.  相似文献   

2.
A new petrogenetic grid is presented for the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O), in which Ca is incorporated in garnet, and CaAlNa−1Si−1 solid solution is considered for both the plagioclase and white-mica structures. A compatibility diagram for plagioclase-bearing metapelitic assemblages within the NCKFMASH system also has been derived. A dominant feature of the NCKFMASH grid is the singularities and associated singular reactions which occur along plagioclase+margarite- and plagioclase+paragonite-bearing univariant equilibria. The singularities represent compositional coplanarities which occur in response to the CaAlNa−1Si−1 substitution occurring at different rates in plagioclase and white-mica. This is controlled by a fundamental difference in the mixing within the two mineral structures. The singularities give rise to a number of intriguing phase diagram features, including azeotropes. From the results presented here, it is predicted that the occurrence of margarite and paragonite in pelitic rocks is controlled by equilibria related to the singularities. The presence of these white-micas is strongly dependent upon bulk composition, and plagioclase-bearing, margarite/paragonite-free assemblages, typical of Barrovian-type terranes, are predicted for bulk compositions of Mg/(Mg+Fe)≈0.4 and Ca/(Ca+Na)≈0.4 at for example 5.5  kbar.  相似文献   

3.
A recent thermodynamic model for the Na–Ca clinoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), is improved, and extended to include cummingtonite–grunerite and the orthoamphiboles, anthophyllite and gedrite. The clinoamphibole model in NCMASH is adopted, but the extension into the FeO- and Fe2O3-bearing systems is revised to provide thermodynamic consistency and better agreement with natural assemblage data. The new model involves order–disorder of Fe–Mg between the M2, M13 and M4 sites in the amphibole structure, calibrated using the experimental data on site distributions in cummingtonite–grunerite. In the independent set of end-members used to represent the thermodynamics, grunerite (rather than ferroactinolite) is used for FeO, with two ordered Fe–Mg end-members, and magnesioriebeckite (rather than ferritschermakite) is used for Fe2O3. Natural assemblage data for coexisting clinoamphiboles are used to constrain the interaction energies between the various amphibole end-members. For orthamphibole, the assumption is made that the site distributions and the non-ideal formulation is the same as for clinoamphibole. The data set end-members anthophyllite, ferroanthophyllite and gedrite, are used; for the others, they are based on the clinoamphibole end-members, with the necessary adjustments to their enthalpies constrained by natural assemblage data for coexisting clino- and orthoamphiboles. The efficacy of the models is illustrated with P – T grids and various pseudosections, with a particular emphasis on the prediction of mineral assemblages in ferric-bearing systems.  相似文献   

4.
Hydration of eclogite, Pam Peninsula, New Caledonia   总被引:2,自引:0,他引:2  
Garnet glaucophanite and greenschist facies assemblages were formed by the recrystallization of barroisite-bearing eclogite facies metabasites in northern New Caledonia. The mineralogical evolution can be modelled by calculated P–T and P–X H2O diagrams for appropriate bulk rock compositions in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites, having developed in a clockwise P–T path that reached P ≈19 kbar and T  ≈590 °C, underwent decompression with the consumption of free H2O as the volume of hydrous minerals increased. Eclogite is preserved in domains that experienced no fluid influx following the loss of this fluid. Garnet glaucophanite formed at P ≈16 kbar during semi-pervasive fluid influx. Fluid influx, after further isothermal decompression, was focused in shear zones, and resulted in chlorite–albite-bearing greenschist facies mineral assemblages that reflect P ≈9 kbar.  相似文献   

5.
Calcsilicate granulites of probable Middle Proterozoic age ( c .1000–1100  Ma) in the vicinity of Battye Glacier, northern Prince Charles Mountains, East Antarctica, contain prograde metamorphic assemblages comprising various combinations of wollastonite, scapolite, clinopyroxene, An-rich plagioclase, calcite, quartz, titanite and, rarely, orthoclase, ilmenite, phlogopite and graphite. Comparison of the prograde assemblages with calculated and experimentally determined phase relations in the simple CaO–Al2O3–SiO2–CO2–H2O system suggests peak metamorphism at ≥835 °C in the presence (in wollastonite-bearing assemblages at least) of a CO2-bearing fluid ( X CO≥0.3) at a probable pressure of 6–7  kbar.
Well-preserved retrograde reaction textures represent: (1) breakdown of scapolite to anorthite+calcite±quartz; (2) formation of grossular–andradite garnet and, locally, (3) epidote, both principally by reactions involving scapolite breakdown products and clinopyroxene; (4) local coupled replacement of clinopyroxene and ilmenite by hornblende and titanite, respectively; and finally (5) local sericitization of prograde and retrograde plagioclase. These retrograde reactions are interpreted to be the result of cooling and variable infiltration by H2O-rich fluids, possibly derived from crystallizing pegmatitic intrusions and segregations that may be partial melts, which are common throughout the area.  相似文献   

6.
The solid-solid reaction magnesiocarpholite = sudoite + quartz has been bracketed between 350 and 500°C, 6.3 and 7.8 kbar. Because it is impossible to synthesize end-member sudoite, all experiments were carried out using natural minerals as starting materials. Although mineral compositions were very close to those of the end-members, the effect of the fluorine content in carpholite was significant. Particularly in those experiments where sudoite grows at the expense of carpholite, electron microprobe analysis of the run products shows that a more stable F-rich carpholite crystallizes too, and consumes the fluorine released in solution by the breakdown of the original carpholite.
Our experimental results are combined, through a thermodynamic analysis, with a previous data set and with previous experimental data concerning the relative stability of chlorite, talc and magnesiocarpholite with excess of quartz and water as a function of P–T and AlAl(SiMg)-1 substitutions in phyllosilicates. This allows us to constrain the feasible thermodynamic parameters (H°f, sud; S ° sud) and (H°f,car; S °car) for the Mg end-members. Using the partition coefficients calculated from natural parageneses, we have computed a petrogenetic grid for the system FeO–MgO–Al2O3–SiO2–H2O. It demonstrates that parageneses involving sudoite and carpholite can be used as indicators of P–T conditions, up to 600° C, 8 kbar for sudoite, and at higher pressure for carpholite.  相似文献   

7.
The proposed geothermobarometer is based on an empirical calibration which takes account of two equilibria involving the tremolite, edenite, pargasite and hastingsite components in amphiboles. It has applications to assemblages found in metabasic rocks of widely different chemical compositions (magnesian to Fe-rich metabasalts), and for metamorphism ranging from lower greenschist to highest amphibolite facies. Knowing the Si(T1), Aliv, Alvi, Fe3+, Fe2+, Mg, Ca, NaM4, NaA and A vacancy in an amphibole, and the Al3+ and X Mg in coexisting epidote and chlorite, it is possible to calculate two values of In K d for this assemblage. These equilibria involve edenite-tremolite and (pargasite/hastingsite)-tremolite end-members in amphibole (the calculation program is given). For these equilibria, the isopleths (iso-values of K d) have been calculated for 0.27 < X Mg < 0.75 and 0 < X Fe3+= Fe3+/(Fe3++ Alvi) < 0.8. It is then possible to determine pressure and temperature directly when X Mg, X Fe3+, In K d for tremoliteedenite and In K d for (pargasite/hastingsite)-tremolite are known. Application of this geothermobarometer is limited to Ca-free plagioclase assemblages, and complete P–T paths can be drawn only if all the minerals are considered together. Phase relations at successive stages of crystallization can be constrained by studying the relationships between the coexisting minerals, their zoning and the metamorphic fabrics.  相似文献   

8.
A thermodynamic model for titanium and ferric iron solution in biotite   总被引:6,自引:1,他引:5  
Recent crystallographic data indicate that in biotite Ti orders preferentially onto the M2 octahedral site rather than onto the M1 site as assumed in previous solution models for K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (KFMASHTO) biotite. In view of these data, we reformulate and reparameterize former biotite solution models. Our reparameterization takes into account Fe–Mg order–disorder and ferric iron contents of natural biotite as well as both natural and experimental observations on biotite Ti-content over a wide range of physicochemical conditions. In comparison with previous biotite models, the new model reproduces the Ti-content and stability field of biotite as constrained by experiments with significantly better accuracy. The predictive power of the model is tested by comparison with petrologically well-characterized natural samples of SiO2-saturated and SiO2-undersaturated rocks that were not used in the parameterization. In all these tests, the reformulated model performs well.  相似文献   

9.
Abstract Microprobe analysis of the continuous chemical evolution of coexisting biotite-garnet and biotite-garnet-staurolite has been undertaken from interbedded micaschists of the volcanodetrital group of the Vilaine. A thermobarometric study using pertinent mineralogical equilibria reveals a complex P-T evolution, continuous throughout time, from high pressure, medium temperature (kyanite zone) to medium pressure, high temperature (sillimanite zone), then low pressure, medium temperature (andalusite zone). The T, P, fH2o and XH2o variations have been calculated from coexisting biotite-garnet pairs, and from the equilibria: paragonite (in white mica) + quartz ± albite (in plagioclase) + Al silicate + H2O; and, 3 anorthite ± grossular + 2 Alsilicate + quartz. The P-T evolution is correlated with the continuous change in composition of minerals (using P–XMg and T–XMg diagrams) and with the evolution of assemblages. This continuous P-T-time evolution, correlated with the successive formation of S1-S2 foliations, allows us to propose a P-T-time-deformation path for the micaschists and to relate the growth of its mineral components to tectonic processes.  相似文献   

10.
Abstract An experimental study of the system CaCO3–MgCO3–FeCO3 was undertaken in order to calibrate the iron correction to the calcite–dolomite geothermometer, which is based on the solubility of magnesium in calcite in the assemblage calcite + dolomite. The experiments, at 450°C and lower temperatures, resulted in products with a very small grain size and incomplete equilibration. However, application of a carefully-devised automatic data processing algorithm to analyses of the phases in experimental charges, combined with a thermodynamic analysis, results in geothermometer diagrams which should be preferred to previous theoretical predictions.  相似文献   

11.
The high- P , medium- T  Pouébo terrane of the Pam Peninsula, northern New Caledonia includes barroisite- and glaucophane-bearing eclogite and variably rehydrated equivalents. The metamorphic evolution of the Pouébo terrane is inferred from calculated P–T  and P–T  – X H2O pseudosections for bulk compositions appropriate to these rocks in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites experienced a clockwise P–T  path that reached P ≈19  kbar and T  ≈600  °C. The eclogitic mineral assemblages are preserved because reaction consequent upon decompression consumed the rocks' fluid. Extensive reaction occurred only in rocks with fluid influx during decompression of the Pouébo terrane.  相似文献   

12.
Abstract Corona textures, which developed in alternating layers in rocks in a supracrustal belt at Errabiddy, Western Australia, involved:
(a) The production of staurolite, cordierite and quartz or sapphirine between Kyanite and/or sillimanite and gedrite; and
(b) The production of cordierite between garnet and gedrite.
These textures are inconsistent with development along the same pressure–temperature path in the system FeO–MgO–Al2O3–SiO2–H2O, but can be accounted for if CaO, mainly in garnet, is taken into account. The sapphirine-bearing kyanite–gedrite textures are explained by lower a (SiO2) during their development. The assemblages indicate a consistent pressure–temperature ( P–T ) trajectory involving substantial uplift with only a slight decrease in temperature. The history of these rocks includes reheating of originally high-grade rocks that had cooled to a stable conductive geotherm, followed by substantial, essentially isothermal uplift. The tectonic environment for this was presumably the one responsible for emplacement of the high-grade terrain in the upper crust.  相似文献   

13.
The cathodoluminescence analyses of the trigonal carbonates calcite and dolomite have been applied intensively in sedimentary petrology for a long time and the properties of these minerals are well-known, but much less attention has been paid to aragonite. In this study, the cathodoluminescence behaviour and the trace element composition of natural and synthetic aragonite have been studied employing trace element analyses (proton induced X-ray emission) and luminescence spectroscopy. Aragonite doped with Mn2+ has been synthesized in a NH4+–Mg2+–Ca2+–Cl solution in contact with a CO2–H2O–NH3 atmosphere. The low effective distribution coefficients indicate a rapid growth of the crystals of millimetre size which occurred within hours or days. The natural aragonite samples contain Mn, Fe and Sr in different concentrations. The Mn-bearing aragonites exhibit a bright green luminescence which is caused by a strong emission band at 575 nm with a half-width of about 84 nm. The luminescence intensity shows a strong positive correlation with Mn in aragonite when Fe and Mn do not exceed 2000 p.p.m. The intensity is depressed if the concentration of these elements exceeds the critical values. In the shell of a recent Unio sp., the luminescence intensity deviates from the linear correlation, although the trace element contents are not too high; this is probably an effect of quenching by organic material between the crystallites of the biogenic aragonite.  相似文献   

14.
Abstract In granulite facies metapelitic rocks in the Musgrave Complex, central Australia, reaction between S1 garnet and sillimanite involves the development in S2 of both garnet + cordierite + hercynitic spinel + biotite and hercynitic spinel + cordierite + sillimanite + biotite. The S2 assemblages occur either in coronas and symplectites, mainly around garnet, or, in rocks in which S2 is more strongly developed, as recrystallized assemblages. Ignoring the presence of biotite and ilmenite, the mineral textures can be accounted for qualitatively by a consideration of the model system FeO-MgO-Al2O3-SiO2 (FMAS); the textural relationships accord with decompression accompanying the change from S1 to S2. However, since biotite and ilmenite are involved in the assemblages, the parageneses are better accounted for in terms of equilibria in the expanded model system K2O-FeO-MgO-Al2O3-SiO2-H2-TiO2-Fe2O3 (KFMASHTO), i.e. AFM + TiO2+ Fe2O3. The coronas reflect the tectonic unroofing of at least part of the Musgrave Complex from peak S1 conditions of about 8 kbar to S2 conditions of about 4 kbar.  相似文献   

15.
Garnet from a kinzigite, a high-grade gneiss from the central Black Forest (Germany), displays a prominent and regular retrograde diffusion zoning in Fe, Mn and particularly Mg. The Mg diffusion profiles are suitable to derive cooling rates using recent datasets for cation diffusion in garnet. This information, together with textural relationships, thermobarometry and thermochronology, is used to constrain the pressure–temperature–time history of the high-grade gneisses. The garnet–biotite thermometer indicates peak metamorphic temperatures for the garnet cores of 730–810  °C. The temperatures for the outer rims are 600–650  °C. Garnet–Al2SiO5–plagioclase–quartz (GASP) barometry, garnet–rutile–Al2SiO5–ilmenite (GRAIL) and garnet–rutile–ilmenite–plagioclase–quartz (GRIPS) barometry yield pressures from 6–9  kbar. U–Pb ages of monazite of 341±2  Ma date the low- P high- T metamorphism in the central Black Forest. A Rb/Sr biotite–whole rock pair defines a cooling age of 321±2  Ma. The two mineral ages yield a cooling rate of about 15±2  °C Ma−1. The petrologic cooling rates, with particular consideration of the f O2 conditions for modelling retrograde diffusion profiles, agree with the geochronological cooling rate. The oldest sediments overlying the crystalline basement indicate a minimum cooling rate of 10  °C Ma−1.  相似文献   

16.
Abstract: The occurrences of the Early Archean carbonate minerals are compiled and their precipitation processes are investigated for the Warrawoona Group, Pilbara Craton. Sedimentary carbonate rocks such as limestone and dolostone are very rare, and only a small amount of sedimentary carbonate minerals are sometimes contained in the hydrothermal bedded chert, implying that a sink of CO2 was minor in the Early Archean sediments. Moreover, it is very likely that the activity of cyanobacteria forming stromatolites was considerably low in the Early Archean. Microfossils and carbonaceous matter in the hydrothermal cherts are probably derived from a non-photosynthetic microorganisms related to the seafloor hydrothermal activity. Their preservation in sediments may play a very minor role in carbon sink of the Earth's surface.
On the other hand, carbonatized volcanic rocks subjected to seafloor hydrothermal alteration occur ubiquitously in the Early Archean greenstone belts such as the Warrawoona Group, suggesting that the hydrothermally altered oceanic crust had large amounts of CO2 as carbonate minerals. Global carbon cycle in the Early Archean is considered to have been controlled by the intense seafloor hydrothermal alteration. Large amounts of CO2 were sunk into the oceanic crust by the alteration. The carbonatized oceanic crust was partly accreted to the continents and/or island–arcs, and partly subducted into the mantle without decomposition. Significant amounts of carbonate minerals in the carbonatized oceanic crust were very likely to store in the accretionary prisms and mantle, consequently giving rise to a decrease of atmospheric and oceanic CO2.  相似文献   

17.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

18.
Accessory phases and minor components in minerals are commonly ignored in thermodynamic modelling. Such an approach seems unwarranted, as accessory phases can represent a significant element reservoir and minor components can substantially change their host mineral's stability field. However, a lack of thermodynamic data prohibits assessment of these effects. In this contribution, the polyhedron method is used to estimate the thermodynamic properties of tourmaline, a common and widespread accessory phase, stable over a range of P–T–X conditions. The polyhedron method allows Δ H , S , V , C P and V m ( T , P ) properties to be estimated from a linear stoichiometric summation over the fractional properties of its polyhedron constituents. To allow for estimates of tourmaline, fractional thermodynamic properties for BIII and BIV polyhedra were derived. Mixing contributions to molar volume were evaluated and symmetrical mixing parameters derived for Al-Mg, Al-Fe and Al-Li interaction on tourmaline's Y-site and T-site Al-Si interaction. Evaluation of the estimated properties using experimental and natural equilibria between tourmaline and melts, minerals and hydrothermal fluids, shows that reliable semi-quantitative results are obtained. The boron contents in fluids coexisting with tourmaline are calculated to within an order of magnitude of measured content, and where anchor-points are available, agreement improves to within a factor of 2. Including tourmaline in petrogenetic modelling of metamorphic rocks indicates that its presence leads to disappearance of staurolite and garnet, among others, and modifies the X Mg of coexisting phases, in line with observations on natural rocks.  相似文献   

19.
A new petrogenetic grid for low-grade metabasites   总被引:7,自引:0,他引:7  
Abstract We have used internally-consistent thermodynamic data to present calculated phase equilibria for the system Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH), in the range 0–500° C and 0.1–10 kbar, involving the phases anorthite, glaucophane, grossular, heulandite, jadeite, laumontite, lawsonite, paragonite, prehnite, pumpellyite, stilbite, tremolite, wairakite, zoisite with excess albite, clinochlore, quartz and pure water. Average activity terms derived from published mineral chemical data were included for clinochlore, glaucophane, prehnite, pumpellyite, tremolite, and zoisite. The new petrogenetic grid delineates stability fields and parageneses of common index minerals in zeolite, prehniteactinolite, prehnite-pumpellyite, pumpellyite-actinolite, blueschist and greenschist facies metabasites. The stability fields of mineral assemblages containing prehnite, pumpellyite, epidote, actinolite (+ albite + chlorite + quartz) were analysed in some detail, using activity data calculated from five specific samples. For example, the prehnite-actinolite facies covers a P-T field ranging from about 220 to 320° C at pressures below 4.5 kbar. The transition from the prehnite-actinolite and pumpellyite-actinolite to greenschist facies occurs at about 250–300° C at 1–3 kbar and at about 250–350° C at 3–8 kbar. P-T fields of individual facies overlap considerably due to variations in chemical composition.  相似文献   

20.
A petrogenetic grid is presented for the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O), including biotite, muscovite, K-feldspar, chlorite, chloritoid, staurolite, cordierite, garnet, orthoamphibole, orthopyroxene, spinel, andalusite, sillimanite, kyanite, quartz and corundum with H2O in excess, which was calculated using the computer program THERMOCALC and the Powell and Holland internally consistent thermodynamic dataset. By removing the normal constraint of having quartz in excess, both quartz-bearing and quartz-absent equilibria are shown. Quartz-absent equilibria are particularly relevant at high- T and low- P conditions, because of their common occurrence at these conditions. The calculated mineral assemblage and mineral compositional variations in terms of FeMg-1 and (Fe, Mg)SiAl-2 exchange vectors are broadly compatible with observations on natural rocks, particularly when non-KFMASH components are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号