首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qimantagh area of Northwest China lies in the western part of the East Kunlun Orogenic Belt and is characterized by extensive magmatism, particularly in the Triassic. However, recent research has shown that Devonian magmatism was also widespread in this area and has a genetic relationship with mineralization. This article presents a detailed study of three types of Early Devonian intrusions: high-K calc-alkaline granites, A-type granites, and mafic intrusions, all from the Qimantagh region. These rocks were subjected to precise zircon U–Pb dating, major and trace element analyses, and Sr–Nd isotope measurements, focusing on the Lalingzaohuo (eastern Qimantagh) and Yemaquan (central Qimantagh) monzogranites, as well as the coeval Tanbeixuefeng (western Qimantagh) mafic dike swarm. To better understand the Early Devonian igneous activity in the Eastern Kunlun, data for other coeval granitoids were compared with our data. The Yemaquan monzogranite yielded a mean zircon U–Pb age of 400.5 ± 1.4 Ma. These rocks are metaluminous to slightly peraluminous, with Al2O3 contents of 13.10–14.16 wt.%, high alkali contents (total K2O + Na2O) of 6.89–7.68 wt.%, relatively low Sr contents (79–192 ppm), and high (La/Yb)N ratios, all of which indicate an I-type granite affinity. The Lalingzaohuo monzogranites yielded mean zircon U–Pb ages of 396.2–402.2 Ma. These rocks have higher SiO2 and alkali contents than the Yemaquan monzogranite, with high 10,000 Ga/Al ratios, high Zr + Nb + Ce + Y contents, high Fe2O3T/MgO ratios, and high Y contents, indicating an A-type granite affinity. These two monzogranites have initial 87Sr/86Sr ratios of 0.703–0.706 and εNd(t) values of –0.1 to –0.7. The Sr–Nd isotopic data require a significant input of a mantle component in the petrogenesis of these granites. The Tanbeixuefeng diabase dikes formed at ~396 Ma and have a continental tholeiitic affinity, as evident from small Ti–Nb–Ta anomalies and high contents of light rare earth and large-ion lithophile elements. We propose that post-collisional slab break-off was responsible for the generation of these Early Devonian intrusions in the Qimantagh area.  相似文献   

2.
A suite of mafic pyroxenite xenoliths and clinopyroxene megacrysts was brought to the surface by Cenozoic nephelinites of the Jbel Saghro Volcanic Field (Anti-Atlas, Morocco). The large population of samples was subdivided into five groups: (i) clinopyroxenites sensu stricto; (ii) olivine clinopyroxenites; (iii) mica-bearing clinopyroxenites; (iv) kaersutite-bearing clinopyroxenites; (v) clinopyroxene megacrysts. These xenoliths display a cumulate texture (adcumulate, heteradcumulate with poikilitic clinopyroxene including olivine). The clinopyroxenes have the composition of augite and show an appreciable variation of MgO (7.02–14.80 wt.%), TiO2 (0.58–5.76 wt.%) and Al2O3 (2.81–12.38 wt.%) contents in grains. The clinopyroxenes are characterized by convex upward chondrite-normalized REE patterns, they display very similar trace element compositions with low contents of incompatible elements such as Rb (0−0.9 ppm), Ba (0.1–8.3 ppm), Th (0.1−0.3 ppm), U (0.01−0.04 ppm) and Nb (1.3–3.2 ppm). REE contents of the calculated melts in equilibrium with the clinopyroxene megacrysts and clinopyroxene from pyroxenite xenoliths are similar to those of the nephelinites exposed in Jbel Saghro. Crystallization temperatures of pyroxenite xenoliths and clinopyroxene megacrysts range from 950 °C to 1150 °C. Clinopyroxene barometry yielded pressure of crystallization ranging from 0.4 to 0.8 GPa for pyroxenite xenoliths and 0.3 to 0.7 GPa for clinopyroxene megacrysts. This pressure range is in agreement with pyroxenite xenoliths and clinopyroxene megacrysts being crystallized from their parental melts at the lower and upper crust.  相似文献   

3.
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO<2 (48 to 77 wt.%). The batholith has calc-alkaline features, for example a Peacock index of 57, and values for K<2O/Na2O (<1), K/Rb (60–350), Zr/Hf (30–50), Nb/Ta (2–22), Hf/Ta (up to 10), and Rb/Zr (<2) in the range of plutonic rocks found in continental magmatic ares. Wide diversity and high values of minor- and trace-element ratios, including Th/Ta (0.5–22), Th/Yb (0–27), Ba/La (0–80), etc., are attributed to intracrustal contributions. Chondrite-normalized REE patterns of metaluminous and relatively mafic intrusives have slightly negative slopes (La/Ybcn<10) and negative Eu anomalies are small orabsent. The metaluminous to peraluminous inter-mediate plutons are relatively enriched in the light REE (La/Ybcn>40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80–164), Th/Ta (<9), Rb/Cs (7–40), K/Cs (0.1–0.5), Ce/Pb (0.5–4), high values of Rb/Sr (1–18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals.  相似文献   

4.
The intrusion of granitoids into the Eastern Sierras Pampeanas in the Early Carboniferous took place after a long period of mainly compressional deformation that included the Famatinian (Ordovician) and Achalian (Devonian) orogenies. These granitoids occur as small scattered plutons emplaced in a dominant extensional setting, within older metamorphic and igneous rocks, and many of them are arranged along a reactivated large shear zone. A set of 46 samples from different granitic rocks: Huaco granitic complex, San Blas pluton, and the La Chinchilla stock from the Sierra de Velasco, Zapata granitic complex from Sierra de Zapata, and the Los Árboles pluton from Sierra de Fiambalá, display high and restricted SiO2 contents between 69.2 and 76.4 wt.%. On both FeO/(FeO + MgO) vs. SiO2 and [(Na2O + K2O) ? CaO] vs. SiO2 plots the samples plot in the ferroan and alkaline-calcic to calco-alkaline fields (FeO/(FeO + MgO) = 0.88–1.0%;[(Na2O + K2O) ? CaO] = 6.3–8.3%), thus showing an A-type granitoid signature. The high concentrations for the High Field Strength Elements (HSFE), such as Y, Nb, Ga, Ta, U, Th, etc. and flat REE patterns showing significant negative Eu anomalies are also typical features of A-type granites. Our petrogenetic model supports progressive fractional crystallization with dominant fractionation of feldspar and a source mineral assemblage enriched in plagioclase. Biotites have distinctive compositions with high FeO/MgO ratios (7.8–61.5), F (360–5610 ppm), and Cl (120–1050 ppm). The FeO/MgO ratios together with the F and Cl content of igneous biotites seem to reflect the nature of their parental host magmas and may be useful in identifying A-type granitoids. The isotopic data (Rb–Sr and Sm–Nd) confirm that the A-type granites represent variable mixtures of asthenospheric mantle and continental crust and different mixtures lead to different subtypes of A-type granite (illustrating the lack of consensus about A-type magma origin). We conclude that prominent shear zones play an important role in providing suitable conduits for ascending asthenospheric material and heat influx in the crust, a hypothesis that is in accord with other recent work on A-type granites.  相似文献   

5.
Triassic granodiorites in South China (SC) provide an opportunity to examine crust–mantle interactions that may have been caused by a mantle plume. Here we present a combined study of chronological, geochemical, and Sr–Nd–Hf isotopic compositions for Dashenshan granodiorites. These are high-K, calc-alkaline, I-type granodiorites that yield a U–Pb zircon age of 211 ± 3 Ma. They are metaluminous to weakly peraluminous (A/CNK < 1.1), with 3.04–3.89 wt.% Na2O and 3.24–3.86 wt.% K2O, and Na2O/K2O ratio ranging from 0.79 to 1.11. These granodiorites contain 67.7–72.6 wt.% SiO2 but show moderate Mg# values (44.2–57.8) and variable contents of Ni (3.6–29.9 ppm) and Cr (7.6–53.5 ppm). They exhibit light rare earth element (REE) enrichment and flat, heavy REE patterns with negative Eu anomalies (Eu/Eu* = 0.52–0.87). They also display strongly negative Ba, Sr, Nb, Ta, P, and Ti anomalies and positive Rb, Th, K, and Pb anomalies. Dashenshan granodiorites have high whole-rock initial 87Sr/86Sr ratios (0.7121–0.7172), negative εNd (t) values (–8.8 to –6.8), and negative zircon εHf (t) values (–6.6 to –3.3). These results suggest that the Dashenshan granodiorites were generated by a mixing between crustal melt and mantle-derived magma in an extensional setting. We conclude that generation of the Dashenshan pluton may reflect an interaction between a mantle plume and the overlying SC crust.  相似文献   

6.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   

7.
There is a broad consensus that the extensive late Mesozoic igneous rocks in NE China were generated in an extensional setting. However, the timing and mechanism of the lithospheric extension remain controversial. To address this, we carried out an integrated study involving LA–ICP–MS zircon U–Pb dating and geochemical analyses (major elements, trace elements, and Hf isotopes) for the Early Cretaceous adakitic lavas and A-type rhyolites of the Songliao Basin. The adakitic lavas are andesites and dacites. The U–Pb dating of zircons from the adakitic lavas and A-type rhyolites yielded ages between 115 and 102 Ma. Geochemically, the adakitic lavas are characterized by high Sr contents (515–1610 ppm) and low Y (0.98–17.58 ppm) and heavy rare earth element (HREE) contents, and they therefore have high Sr/Y (51–112) ratios. They also exhibit high Mg# values (36–57) and high contents of MgO (0.56–3.53 wt%), Cr (15.7–87.3 ppm), and Ni (6.7–44.7 ppm) that are comparable with those of high-Mg adakitic rocks. The A-type rhyolites show an affinity with aluminous A-type magmatic rocks, and they are metaluminous to peraluminous (A/CNK = 0.98–1.35), enriched in alkalis, Ga, Zr, Nb, and Y, depleted in Sr and P, and exhibit fractionated REE patterns with negative Eu anomalies (Eu/Eu* = 0.05–0.77). All the primary zircons from the adakitic lavas and A-type rhyolites have positive εHf(t) values of +3.6 to +12.1 and juvenile two-stage model (TDM2) ages of 934–392 Ma. The adakitic lavas probably resulted from the partial melting of a delaminated region of the lower continental crust, with the magmas subsequently interacting with mantle materials upon ascent, while the A-type rhyolites were probably generated by the partial melting of a dehydrated charnockitic middle–lower crust. The data suggest that the adakitic lavas and the A-type rhyolites formed in an extensional environment related to the rollback of the subducting Paleo-Pacific Plate. The upwelling of asthenospheric mantle and local delamination of the lithosphere, which were induced by rollback of the subducting Paleo-Pacific Plate, extended from the Great Xing'an Range southeastward through the Songliao Basin to eastern Heilongjiang and Jilin provinces, giving rise to the southeastward migration of lithospheric extension and extension-related volcanism after ca. 140 Ma.  相似文献   

8.
The Sauwald area is located at the southern rim of the Bohemian Massif and contains migmatites and high-grade metapelitic and granitic gneisses. These rocks were metamorphosed during the post-collisional high-T/low-P stage of the Variscan metamorphic event (~330 Ma). Metapelitic samples were taken from two localities near Kössldorf and Pyret in Upper Austria and the investigated samples contain the mineral assemblage garnet + cordierite + spinel + sillimanite + K-feldspar + quartz + biotite + muscovite + magnetite + graphite. An important aspect of this study is the evaluation of previously published P-T estimates for these high-grade metapelites (Knop et al. 1995; Tropper et al. 2006) involving Ti-in-biotite, Na-in-cordierite thermometry and the micro-Raman thermometer based upon the degree of crystallization of carbonaceous material. In the two samples studied three texturally and chemically different biotites are distinguished. Biotite inclusions in garnet have the highest Ti contents of 5–6 wt.% TiO2. Matrix biotites contain 2–4 wt.% TiO2 and biotites from late-stage muscovite-biotite symplectites contain <2 wt.% TiO2. This corresponds to temperatures of 730–760°C (stage 1), 600–700°C (stage 2), and 550–610°C (stage 3). Since the Ti-in-biotite thermometer strongly depends on X Mg of biotite, which is susceptible to changes during retrogression the calculated temperatures for stage 1 are interpreted as minimum temperatures of the peak metamorphic stage. The Na contents of the studied cordierites vary from 0.1 to 0.2 wt.% Na2O. Application of the Na-in-cordierite thermometer yields temperatures in the range of 770–900°C; they are strongly dependent on the bulk Na2O content of the samples. The micro-Raman geothermometer of graphite was applied to carbonaceous material, which occurs as inclusions in garnet and cordierite. It yielded a maximum temperature >650°C, i.e. above the calibration limit of this method. This study shows that the obtained temperature estimates agree well with the P-T estimates based on phase equilibrium thermobarometry (Knop et al. 1995; Tropper et al. 2006), thus illustrating the validity of these thermometers. Nevertheless in order to more precisely constrain the metamorphic evolution of these high-grade rocks, better constrained experimental calibrations of, for instance the Na-in-cordierite thermometer, are clearly needed.  相似文献   

9.
《International Geology Review》2012,54(15):1746-1764
The Nantianwan mafic–ultramafic complex is situated in the northwest part of the Panxi district, southwest China. It consists predominantly of gabbros, gabbronorites, and lherzolites. LA–ICP–MS U–Pb zircon dating of the gabbronorites yields an age of 259.7 ± 0.6 million years, consistent with the ages of other mafic–ultramafic intrusions in the Emeishan large igneous province (ELIP). Gabbronorites and lherzolites host Cu–Ni sulphide ores. Cumulus texture is pronounced in these rocks, containing magnesium-rich olivine (up to 81.4% forsterite). SiO2 contents of the lherzolites range from 42.93 to 44.18 wt.%, whereas those of the gabbronorites vary between 44.89 and 52.76 wt.%. Analysed samples have low rare earth element (REE) contents (23.22–30.16 ppm for lherzolites and 25.21–61.05 ppm for gabbronorites). Both lherzolites and gabbronorites have similar chondrite-normalized REE patterns, suggesting that they are comagmatic. All samples are slightly enriched in large ion lithophile elements (LILEs, e.g. Rb, Ba, and Sr) relative to high field strength elements (HFSEs, e.g. Nb, Ta, and Ti), very similar to those of ocean island basalts (OIBs). The presence of cumulus textures and geochemical signatures indicates that fractional crystallization played an important role in the petrogenesis of these rocks. Initial (87Sr/86Sr) t (t?=?260 Ma) ratios and ?Nd(t) values of the mafic–ultramafic suite vary from 0.70542 to 0.70763, and??0.4 to 1.7, respectively. Compared to the Cu–Ni-bearing Baimazhai and Limahe intrusions in the ELIP, which were considerably contaminated by variable crustal materials, the Nantianwan complex exhibits much lower (87Sr/86Sr) t . Their ?Nd(t) versus (Th/Nb)PM ratios also indicate that the ore-bearing magmas did not undergo significant crustal contamination. In combination with (Tb/Yb)PM versus (Yb/Sm)PM modelling, we infer that the magmas originated from an incompatible elements-enriched spinel-facies lherzolite that itself formed by interaction between the Emeishan plume and the lithospheric mantle. Most plots of NiO versus Fo contents of olivine suggest that sulphides are separated from the parental magma by liquid immiscibility, which is also supported by bulk-rock Cu/Zr ratios of the lherzolites (7.04–102.67) and gabbronorites (0.88–5.56). We suggest that the gabbronorites and lherzolites experienced undersaturation to oversaturation of sulphur; the latter may be due to fractional crystallization in a high-level magma chamber, accounting for the sulphide segregation.  相似文献   

10.
ABSTRACT

Large-scale Cu–Au mineralization is associated with Late Mesozoic intrusive rocks in the Tongling region of eastern China, which mainly comprise pyroxene monzodiorite, quartz monzodiorite, and granodiorite. To constrain the petrogenesis of the intrusive rocks and Cu–Au mineralization, detailed analyses of the geochronology, apatite in situ geochemistry, whole-rock geochemistry, and zircon Hf isotopic compositions were performed. Magmatic zircons from pyroxene monzodiorites, quartz monzodiorites, and granodiorites yield U–Pb ages of 136–149 Ma, 136–146 Ma, and 138–152 Ma, respectively, indicating that their formation ages are contemporaneous. Quartz monzodiorites and granodiorites (SiO2 = 57.9–69.5 wt.%) are highly potassic calc-alkaline rocks with adakitic affinity and have low MgO and Y contents, low zircon εHf(t) values (?11.7 to ?39.0), high apatite Cl contents (>0.2 wt.%), and log fO2 values (?23.2 to ?8.23), indicating that they may have formed when metasomatized mantle-derived magmas mixed with slab-derived magmas before undergoing crustal assimilation and fractional crystallization. Pyroxene monzodiorites (SiO2 = 48.4–53.0 wt.%) are shoshonitic and record high MgO, P2O5, and Y contents, high zircon εHf(t) values (1.55 to ?7.87), high oxygen fugacity, low Nb and Ta contents, and low apatite Cl contents (mainly <0.2 wt.%), suggesting that they were primarily derived from a metasomatized lithospheric mantle-derived magma that experienced the assimilation of lower crustal materials. The results indicate that the intrusive rocks and associated large-scale Cu–Au mineralization of the Tongling region resulted from the partial melting of the subducted oceanic slab in an oxidizing environment.  相似文献   

11.
Early Ordovician A-type granites in the northeastern (NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region. This research presents new zircon U–Pb ages and whole-rock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2O compositions and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous feature with A/CNK values of 0.98–1.14. The rocks have a ∑REE composition of 249.98–423.94 ppm, and are enriched in LREE with (La/Yb)N values of 2.87–9.87, and display obvious Eu anomalies (δEu?=?0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr?+?Y?+?Nb?+?Ce values (324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb (7.98–24.19) and Y/Nb (1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and (Ho/Yb)N ratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing’an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust. We suggest that the Paleo-Asian Ocean plate between the Xing’an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.  相似文献   

12.
Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol?=?90.3–91.7) and minor fertile lherzolites (Mg#-Ol?=?88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.  相似文献   

13.
对南岭地区侏罗纪4个典型"铝质"A型花岗岩岩基——柯树北、寨背、西山和南昆山的成因分析表明:柯树北、寨背岩基中的低分异花岗岩SiO2≈70%,A/CNK<1.1,CaO≥1%,高Zr、Ba含量,是下地壳部分熔融产物;而SiO2含量较高者由低分异花岗岩岩浆通过分离结晶演化而来。西山花岗质火山-侵入杂岩也是下地壳部分熔融产物。南昆山花岗岩为高硅花岗岩,贫Zr、低Ba、Sr和Eu/Eu*值,但具有高的Nb、Ga、REE含量和Ga/Al比值,在Whalen等(1987)图解中地球化学参数落在A型花岗岩区域内。碱性玄武岩浆分离结晶的成岩模式无法解释南昆山岩基较大的体积、均一的成分和低的Nb/Ta比值。详细的成岩分析表明,南昆山花岗岩可能是先期侵入的(幔源)碱性正长岩在富水和相对低温低压条件下发生部分熔融的产物。由这些"铝质"A型花岗岩的熔融温压条件估算得出热流值达到80~95mWm-2的南岭地区侏罗纪古地温线。由古地温线推算出的岩石圈厚度45~75km。南岭侏罗纪高热流背景及其对应的花岗质岩浆活动可能与后碰撞造山阶段岩石圈地幔拆沉或被"热侵蚀"有关,但并不一定意味着岩石圈伸展的大地构造环境。  相似文献   

14.
ABSTRACT

The Hujialin ultramafic complex in the central region of the Sulu ultra-high pressure (UHP) metamorphic belt consists of discontinuous lenses of garnet-bearing clinopyroxenite and dunite surrounded by marginal serpentinite. The clinopyroxenite shows relatively low concentrations of compatible elements, such as Cr (≤1670 ppm) and Ni (≤514 ppm) and Ir-group platinum group elements (IPGE; Ir, Os, and Ru; ≤4.8 ppb in total). They show varying ratios (0.02–2.50) of IPGE to Pd-group PGE (PPGE). Their chondrite-normalized rare earth elements (REE) patterns are convex and the total REE concentrations range from 18 to 63 times that of Cl chondrite. The bulk rocks show a ‘subduction-related’ geochemical signature, with high concentrations of fluid-mobile elements (i.e. Sr, Ba) relative to high-field strength elements (i.e. Nb, Y, Zr). Clinopyroxene is diopside and contains low Al2O3 (<2.76 wt.%) and high SiO2 (54.6–56.9 wt.%). Olivine grains enclosed by clinopyroxene and in the matrix show relatively low Fo (76.6–80.7) and NiO contents (0.18–0.29 wt.%). The bulk rock compositions and mineral chemistry of olivine and clinopyroxene suggest that the unit was a cumulate of a subduction-related melt. On the other hand, dunite and its hydration product, serpentinite, have a different origin. The bulk rock and mineral chemistry suggest that dunite represents a mantle wedge peridotite in a spinel-stable field. Both clinopyroxenite and spinel-bearing dunite were once located in the mantle wedge below the southern margin of the North China craton (NCC), and were dragged by a mantle flow into the continental subduction channel along the interface between the subducting Yangtze craton (YZC) and the overlying NCC. Although clinopyroxenite and dunite are dense (2.8–3.2 g/cm3), the buoyancy-driven exhumation of voluminous granitic rocks of the YZC likely brought clinopyroxenite and dunite to shallow crustal depths. The lack of the evidence for high pressure to ultra-high pressure (HP-UHP) metamorphism in spinel-bearing dunite may be explained by overall low Al and Ca in the bulk rocks. Alternatively, dunite was not subducted to deep levels, but exhumed together with the deeply subducted clinopyroxenites and granite during their exhumation.  相似文献   

15.
Scheelite and rutile from several metaturbidite-hosted gold-bearing quartz vein deposits of the Meguma Terrane of Nova Scotia were analyzed for trace elements including rare earth elements, niobium and tantalum. Scheelites have high concentrations of Sr, Nb, Y and rare earth elements (REE) with bell-shaped chondrite-normalized REE patterns accompanied by both positive and negative Eu anomalies. They also have high Nb/Ta ratios (80–300). Three distinct trace element types of the scheelites are interpreted to reflect chemical differences in the pulses of hydrothermal fluids. Hydrothermal rutiles have high contents of W (up to 4.2 wt.% WO3), are rich in Ta compared to Nb and have a very low Nb/Ta ratio (~0.3). Hydrothermal fluids which produced both scheelite with a high Nb/Ta and rutile with a low Nb/Ta ratio are an efficient medium for fractionation of this ratio although these two minerals play an important role during the process.  相似文献   

16.
The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.  相似文献   

17.
The South Dehgolan pluton, in NW Iran was emplaced into the Sanandaj–Sirjan magmatic–metamorphic zone. This composite intrusion comprises three main groups: (1) monzogabbro–monzodiorite rocks, (2) quartz monzonite–syenite rocks, and (3) a granite suite which crops out in most of the area. The granites generally show high SiO2 content from 72.1%–77.6 wt.% with diagnostic mineralogy consisting of biotite and amphibole along the boundaries of feldspar–quartz crystals which implies anhydrous primary magma compositions. The granite suite is metaluminous and distinguished by high FeOt/MgO ratios (av. 9.6 wt.%), typical of ferroan compositions with a pronounced A‐type affinity with high Na2O + K2O contents, high Ga/Al ratios, enrichment in Zr, Nb, REE, and depletion in Eu. The quartz monzonite–syenites show intermediate SiO2 levels (59.8%–64.5 wt.%) with metaluminous, magnesian to ferroan characteristics, intermediate Na2O + K2O contents, enrichment in Zr, Nb, REE, Ga/Al, and depletion in Eu. The monzogabbro–monzodiorites show overall lower SiO2 content (48.5%–55.9 wt.%) with metaluminous and calc‐alkaline compositions, relatively lower Na2O + K2O contents, low Ga/Al ratios, and FeOt/MgO (av. 1.6 wt.%) ratios, low abundances of Zr, Nb, and lower REE element concentrations relative to the granites and quartz monzonite–syenites. These geochemical differences among the three different rocks suites are likely to indicate different melt origins. We suggest that the South Dehgolan pluton resulted from a change in the geodynamic regime, from compression to extension in the Sanandaj–Sirjan zone during Mesozoic subduction of the Neo‐Tethys oceanic crust beneath the Central Iranian microcontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The Palaeoproterozoic Luoling granites occur along the southern margin of the North China Craton. They are rich in silica and total alkalis with SiO2 contents ranging from 65.18 to 72.72 wt.%, K2O from 4.68 to 6.62 wt.%, and Na2O from 1.35 to 4.88 wt.%. They have high Fe*[FeOt/(FeOt + MgO)] ranging from 0.84 to 0.95 wt.% and low MnO (0.03–0.09 wt.%), MgO (0.27–1.55 wt.%), CaO (0.36–2.04 wt.%), TiO2 (0.4–1.12 wt.%), and P2O5 (0.04–0.36 wt.%). Geochemically, they show typical characteristics of A-type granites, such as high contents of alkalis (i.e. high K2O + Na2O, with K2O/Na2O > 1), Rb, Y, Nb, and REEs (except for Eu); high FeOt/MgO and Ga/Al ratios; and low CaO, Al2O3, and Sr contents. New secondary ion mass spectroscopy (SIMS) zircon U–Pb ages reveal that the Luoling granites were emplaced at 1786 ± 7 Ma and thus were approximately coeval with Xiong'er volcanic rocks in the area. Their negative bulk-rock initial Nd and zircon initial Hf isotopic ratios suggest that they have affinities to EM-I-type mantle and both are the products of Xiong'er magmatism during the Palaeoproterozoic. We regard them as produced under a continental rift setting during the Palaeoproterozoic, genetically related to the break-up of the Columbia supercontinent.  相似文献   

19.
Epidote-bearing porphyritic dikes (whole rock analysis: SiO2?=?55–65 wt. %, MgO <2.1 wt. %, K2O <2.5 wt. %, Al2O3 >17 wt. %, Na2O + K2O?=?5.7–9.4 wt. %) situated in the continental margin zone, the Middle Urals, Russian Federation have been dated using SHRIMP U-Pb zircon techniques and give a Middle Devonian age of 388?±?2 Ma and 389?±?6 Ma. The porphyries contain phenocrysts of magmatic epidote (Ps?=?17–25 %), Ca- and Mn-rich (CaO >9 wt. %; MnO >6 wt. %) almandine garnet, Al-rich (Al2O3?=?12–16 wt. %) amphibole, titanite, plagioclase, biotite, muscovite, apatite, and quartz. 60 to 70 % groundmass of the porphyritic dikes consists of fine-grained albite, quartz, and K-feldspar. A variety of thermobarometric estimations, plus comparison with published experimental data indicate that the phenocryst assemblage was stable between 5 and 11 kbar and 690 to 800 °C. Oxygen fugacity was close to or greater than logfo2 = Ni-NiO + 1. Later stage formation of the quartz-feldspar groundmass took place at hypabyssal conditions, corresponding to 1 to 2 kbar and 660 to 690 °C. The porphyritic dikes are metaluminous to slightly peraluminous (ACNK?=?0.7–1.17). They are enriched in REE and depleted Nb and Ti. They show features typical of subduction-related magmas. Chemical composition and isotopic ratios of 86Sr/87Sri?=?0.709–0.720 suggest that both mantle- and deep crustal-derived materials were involved in their petrogenesis.  相似文献   

20.
Cu ± Au ± Mo mineralization is found in multiple intrusive suites in the Gangdese belt of southern Tibet (GBST). However, the petrogenesis of these ore-bearing intrusive rocks remains controversial. Here, we report on mineralization-related Late Cretaceous-early Eocene intrusive rocks in the Chikang–Jirong area, southern Gangdese. Zircon U–Pb analyses indicate that the mainly granodioritic Chikang and Jirong plutons were generated in the Late Cretaceous (ca. 92 Ma) and early Eocene (ca. 53 Ma), respectively. They are high-K calc-alkaline suites with high SiO2 (64.8–68.3 wt.%) and Al2O3 (15.1–15.7 wt.%) contents. Chikang granodiorites are characterized by high Sr (835–957 ppm), Sr/Y (118–140), Mg# (58–60), Cr (21.8–36.6 ppm), and Ni (14.3–22.9 ppm), and low Y (6.0–8.1 ppm), Yb (0.54–0.68 ppm) values with negligible Eu anomalies, which are similar to those of typical slab-derived adakites. The Jirong granodiorites have high SiO2 (64.8–65.3 wt.%) and Na2O + K2O (7.19–7.59 wt.%), and low CaO (2.45–3.69 wt.%) contents, Mg# (47–53) and Sr/Y (14–16) values, along with negative Eu and Ba anomalies. Both Chikang and Jirong granodiorites have similar εHf(t) (7.6–13.1) values. The Chikang granodiorites were most probably produced by partial melting of subducted Neo-Tethyan oceanic crust, and the Jirong granodiorites were possibly generated by partial melting of Gangdese juvenile basaltic crust. In combination with the two peak ages (100–80 and 65–41 Ma) of Gangdese magmatism, we suggest that upwelling asthenosphere, triggered by the rollback and subsequent break-off of subducted Neo-Tethyan oceanic lithosphere, provided the heat for partial melting of subducted slab and arc juvenile crust. Taking into account the contemporaneous occurrence of Gangdese magmatism and Cu ± Au ± Mo mineralization, we conclude that the Late Cretaceous–early Eocene magmatic rocks in the GBST may have a significant potential for Cu ± Au ± Mo mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号