首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
CO2 geosequestration is an efficient way to reduce greenhouse gas emissions into the atmosphere. Carbonate rock formations are one of the possible targets for CO2 sequestration due to their relative abundance and ability to serve as a natural trapping reservoir. The injected supercritical CO2 can change properties of the reservoir rocks such as porosity, permeability, tortuosity, and specific surface area due to dissolution and precipitation processes. This, in turn, affects the reservoir characteristics, i.e., their elastic properties, storage capacity, stability, etc. The tremendous progresses made recently in both microcomputed X‐ray tomography and high‐performance computing make numerical simulation of physical processes on actual rock microstructures feasible. However, carbonate rocks with their extremely complex microstructure and the presence of microporosity that is below the resolution of microcomputed X‐ray tomography scanners require novel, quite specific image processing and numerical simulation approaches. In the current work, we studied the effects of supercritical CO2 injection on microstructure and elastic properties of a Savonnières limestone. We used microtomographic images of two Savonnières samples, i.e., one in its natural state and one after injection and residence of supercritical CO2. A statistical analysis of the microtomographic images showed that the injection of supercritical CO2 led to an increase in porosity and changes of the microstructure, i.e., increase of the average volume of individual pores and decrease in the total number of pores. The CO2 injection/residence also led to an increase in the mean radii of pore throats, an increase in the length of pore network segments, and made the orientation distribution of mesopores more isotropic. Numerical simulations showed that elastic moduli for the sample subjected to supercritical CO2 injection/residence are lower than those for the intact sample.  相似文献   

2.
The present work describes the results of a modeling study addressing the geological sequestration of carbon dioxide (CO2) in an offshore multi-compartment reservoir located in Italy. The study is part of a large scale project aimed at implementing carbon capture and storage (CCS) technology in a power plant in Italy within the framework of the European Energy Programme for Recovery (EEPR). The processes modeled include multiphase flow and geomechanical effects occurring in the storage formation and the sealing layers, along with near wellbore effects, fault/thrust reactivation and land surface stability, for a CO2 injection rate of 1 × 106 ton/a. Based on an accurate reproduction of the three-dimensional geological setting of the selected structure, two scenarios are discussed depending on a different distribution of the petrophysical properties of the formation used for injection, namely porosity and permeability. The numerical results help clarify the importance of: (i) facies models at the reservoir scale, properly conditioned on wellbore logs, in assessing the CO2 storage capacity; (ii) coupled wellbore-reservoir flow in allocating injection fluxes among permeable levels; and (iii) geomechanical processes, especially shear failure, in constraining the sustainable pressure buildup of a faulted reservoir.  相似文献   

3.
The concentration of greenhouse gases – particularly carbon dioxide (CO2) – in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.  相似文献   

4.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   

5.
The typical shape of a capillary-pressure curve is either convex (e.g., Brooks–Corey model) or S-shaped (e.g., van Genuchten model). It is not universally agreed which model reflects natural rocks better. The difference between the two models lies in the representation of the capillary entry pressure. This difference does not lead to significantly different simulation results for modeling CO2 sequestration in aquifers without considering CO2 dissolution. However, we observe that the van-Genuchten-type capillary-pressure model accelerates CO2 solubility trapping significantly compared with the Brooks–Corey-type model. We also show that the simulation results are very sensitive to the slope of the van-Genuchten-type curve around the entry-pressure region. For the representative examples we study, the differences can be so large as to have complete dissolution of the CO2 plume versus persistence of over 50% of the plume over a 5000-year period.The cause of such sensitivity to the capillary-pressure model is studied. Particularly, we focus on how the entry pressure is represented in each model. We examine the mass-transfer processes under gravity-capillary equilibrium, molecular diffusion, convective mixing, and in the presence of small-scale heterogeneities. Laboratory measurement of capillary-pressure curves and some important implementation issues of capillary-pressure models in numerical simulators are also discussed. Most CO2 sequestration simulations in the literature employ one of the two capillary-pressure models. It is important to recognize that these two representations lead to very different predictions of long-term CO2 sequestration.  相似文献   

6.
Extraction of groundwater or hydrocarbons causes pore pressure gradients and soil deformation due to poroelastic coupling. Recent studies show that high-resolution engineering tiltmeters installed at shallow depth between 2 and 10 m resolve this deformation. Models using poroelasticity can describe the relationship between fluid extraction, pore pressure gradients and induced tilt for homogeneous and layered sedimentary half spaces. Faults intersecting a stack of sedimentary layers, for example in the Lower-Rhine-Embayment, are of fundamental impact to the groundwater flow system of an area. However, the fault’s hydromechanical effect on pump induced tilt and the pore pressure regime is still poorly investigated. We chose a comparatively simple approach to quantify anomalous pump induced tilt and pore pressure observed near a fault and close to the surface in a sedimentary subsoil. A PC-based Finite Element software is used to model poroelastic deformation, i.e. modelling vertical tilt and excess pore pressure in response to fluid extraction through a singular well. We compare numerical solutions for models with and without faults and show that a fault can modify symmetry and amplitude of the deformation field by more than a magnitude. We conclude that tilt and pore pressure measurements also at shallow depth can thus be biased by large subsurface structures like faults. Vice versa, these measurements may provide means to quantify hydromechanical effects caused by subsurface structures. However, depending on the geological setting, i.e. if pathways are established by a fault, the anomaly caused by the fault can also be small and hard to detect. Therefore, faults and geological structures like material boundaries have to be considered in poroelastic models carefully. For tilt surveys with a limited number of instruments in geologically well constrained areas these models allow the preselection of potential positions for tiltmeters where prominent field anomalies are expected.  相似文献   

7.
Tracking the migration of the CO2 plume is essential in order to better manage the operation of geologic sequestration of CO2. However, the large cost of most monitoring technologies, such as time-lapse seismic, limits their application. We investigated the application of a probabilistic history matching methodology using routine measurements of injection data, which are affected by the presence of large-scale heterogeneities, as an inexpensive alternative to track the migration of CO2 plume in an aquifer. The approach is demonstrated first through a synthetic example in which the ability to detect the presence of flow barriers was tested. In a second example, we applied our method to the In Salah field, one of the largest geological sequestration projects in the world, where the main direction of high permeability features was inferred. The accuracy and reproducibility of the results show that our approach for assisted history matching is an economic and viable option for plume monitoring during geologic CO2 sequestration.  相似文献   

8.
Carbon dioxide injection into deep saline formations may induce large‐scale pressure increases and migration of native fluid. Local high‐conductivity features, such as improperly abandoned wells or conductive faults, could act as conduits for focused leakage of brine into shallow groundwater resources. Pressurized brine can also be pushed into overlying/underlying formations because of diffuse leakage through low‐permeability aquitards, which occur over large areas and may allow for effective pressure bleed‐off in the storage reservoirs. This study presents the application of a recently developed analytical solution for pressure buildup and leakage rates in a multilayered aquifer‐aquitard system with focused and diffuse brine leakage. The accuracy of this single‐phase analytical solution for estimating far‐field flow processes is verified by comparison with a numerical simulation study that considers the details of two‐phase flow. We then present several example applications for a hypothetical CO2 injection scenario (without consideration of two‐phase flow) to demonstrate that the new solution is an efficient tool for analyzing regional pressure buildup in a multilayered system, as well as for gaining insights into the leakage processes of flow through aquitards, leaky wells, and/or leaky faults. This solution may be particularly useful when a large number of calculations needs to be performed, that is, for uncertainty quantification, for parameter estimation, or for the optimization of pressure‐management schemes.  相似文献   

9.
Shear-wave velocity is a key parameter for calibrating monitoring time-lapse 4D seismic data during CO2-EOR (Enhanced Oil Recovery) and CO2 sequestration. However, actual S-wave velocity data are lacking, especially in 4D data for CO2 sequestration because wells are closed after the CO2 injection and seismic monitoring is continued but no well log data are acquired. When CO2 is injected into a reservoir, the pressure and saturation of the reservoirs change as well as the elastic parameters of the reservoir rocks. We propose a method to predict the S-wave velocity in reservoirs at different pressures and porosities based on the Hertz–Mindlin and Gassmann equations. Because the coordination number is unknown in the Hertz–Mindlin equation, we propose a new method to predict it. Thus, we use data at different CO2 injection stages in the Gao89 well block, Shengli Oilfield. First, the sand and mud beds are separated based on the structural characteristics of the thin sand beds and then the S-wave velocity as a function of reservoir pressure and porosity is calculated. Finally, synthetic seismic seismograms are generated based on the predicted P- and S-wave velocities at different stages of CO2 injection.  相似文献   

10.
Deep saline aquifers are important geological formations for CO2 sequestration. It has been known that dissolution of CO2 increases brine density, which results in downward density-driven convection and consequently greatly enhances CO2 sequestration. In this study, a continuum-scale lattice Boltzmann model is used to investigate convective mixing of CO2 in saline aquifers. It is found that increasing permeability in either the vertical or horizontal direction accelerates the development of convective mixing. In a heterogeneous aquifer, increasing heterogeneity hampers the onset of convective mixing, because the heterogeneous permeability field results in a large portion of low-velocity region which reduces the instability of the system. The critical time for the onset of instability depends mainly on the coefficient of variation (COV) of the permeability field, and is insensitive to the correlation length. This implies that within the scale of critical time, mass transport is dominated by diffusion, and thus depends mainly on fine-scale heterogeneity controlled by COV. We derived an empirical formula for estimating the critical time, which leads to good estimates for all combinations of COV and correlation length. Fingering, channeling, and dispersion are the three mechanisms for mass transport. In dispersion, dissolved mass is approximately proportional to the square root of time, while in fingering and channeling it is approximately proportional to time. Mass transport by channeling depends significantly on permeability structure, while by fingering it is controlled by gravitational instability. It is also found that larger volumes of CO2 can be stored in heterogeneous aquifers because of higher mass dissolution rates.  相似文献   

11.
工业开采注水能导致现存断层活化,从而诱发大量的破坏型地震.因此,研究注水作用下断层的动力学响应对探索诱发地震的力学机理具有重要的意义.本文基于孔弹性弹簧-滑块模型,采用多孔介质弹性耦合数值模拟,计算分析了三类典型注水方式(上升型、迅速上升/下降型和间歇型)对断层稳定性的影响.研究结果表明:随着流体的不断注入,断层内部流...  相似文献   

12.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

13.
Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.  相似文献   

14.
In this paper, we develop a methodology for early detection of potential CO2 leakage from geological storage formations using pressure and surface-deformation anomalies. The basic idea is based on the fact that leakage-induced pressure signals travel much faster than the migrating CO2; thus such anomalies may be detected early enough for risk management measures taking effect in avoiding substantial CO2 leaks. The early detection methodology involves automatic inversion of anomalous brine leakage signals with efficient forward pressure and surface-deformation modeling tools to estimate the location and permeability of leaky features in the caprock. We conduct a global sensitivity analysis to better understand under which conditions pressure anomalies can be clearly identified as leakage signals, and evaluate signal detectability for a broad parameter range considering different detection limits and levels of data noise. The inverse methodology is then applied to two synthetic examples of idealized two-aquifer-and-one aquitard storage systems, with an injection well and a leaky well, for different monitoring scenarios. In Example 1, only pressure data at the monitoring and injection wells are used for leakage detection. Our results show that the accuracy of leakage detection greatly depends on the level of pressure data noise. In Example 2, joint inversion of pressure and surface-deformation measurements significantly improves the speed of convergence toward the true solution of the leakage parameters and enables early leakage detection. In both examples, successful detection is achieved when two monitoring wells are appropriately placed within up to 4 km from the leaky well.  相似文献   

15.
The standard approach for geologic storage of CO2 consists of injecting it as a supercritical CO2 phase. This approach places stringent requirements on the caprock, which must display: (1) high entry pressure to prevent the buoyancy driven upwards escape of CO2; (2) low permeability to minimize the upwards flux of brine displaced by the CO2; and (3) high strength to ensure that pressure build up does not cause caprock failure. We propose an alternative approach for cases when the above requirements are not met. The approach consists of extracting brine from the storage formation and then re-injecting it so that it mixes with CO2 at depth in the injection well. Mixing at depth reduces the pressure required for brine and CO2 at the surface. This CO2-saturated brine will sink to the aquifer bottom because it is denser than resident brine, which eliminates the risk of buoyant escape of CO2. The method is particularly favorable when the aquifer dips, because CO2-saturated brine will tend to flow downslope. We perform two- and three-dimensional numerical simulations to study how far upslope the extraction well needs to be located to ensure a very long operation without CO2 ever breaking through. Several sets of simulations were carried out to evaluate the effect of slope, temperature, pressure and CO2 concentration, which is significantly reduced if flue gas (i.e., without capture) is mixed with the brine. We analyze energy requirements to find that the system requires high permeability to be viable, but its performance is improved by taking advantage of the thermal energy of the extracted brine.  相似文献   

16.
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot’s modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth’s surface near the block boundary are discussed.  相似文献   

17.
Prediction of CO2 injection performance in deep subsurface porous media relies on the ability of the well to maintain high flow rates of carbon dioxide during several decades typically without fracturing the host formation or damaging the well. Dynamics of solid particulate suspensions in permeable media are recognized as one major factor leading to injection well plugging in sandstones. The invading supercritical liquid-like fluid can contain exogenous fine suspensions or endogenous particles generated in situ by physical and chemical interactions or hydrodynamic release mechanisms. Suspended solids can plug the pores possibly leading to formation damage and permeability reduction in the vicinity of the injector. In this study we developed a finite volume simulator to predict the injectivity decline near CO2 injection wells and also for production wells in the context of enhanced oil recovery. The numerical model solves a system of two coupled sets of finite volume equations corresponding to the pressure-saturation two-phase flow, and a second subsystem of solute and particle convection-diffusion equations. Particle transport equations are subject to mechanistic rate laws of colloidal, hydrodynamic release from pore surfaces, blocking in pore bodies and pore throats, and interphase particle transfer. The model was validated against available laboratory experiments at the core scale. Example results reveal that lower CO2 residual saturation and formation porosity enhance CO2-wet particle mobility and clogging around sinks and production wells. We conclude from more realistic simulations with heterogeneous permeability spanning several orders of magnitude that the control mode of mobilization, capture of particles, and permeability reduction processes strongly depends on the type of permeability distribution and connectivity between injection and production wells.  相似文献   

18.
A series of time‐lapse seismic cross‐well and single‐well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P‐ and S‐wave data. A high‐frequency piezo‐electric P‐wave source and an orbital‐vibrator S‐wave source were used to generate waves that were recorded by hydrophones as well as 3‐component geophones. During the first phase the set of seismic experiments was conducted after the injection of water into the hydrofractured zone. The set of seismic experiments was repeated after a time period of seven months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geological structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore, it was intended to determine which experiment (cross‐well or single‐well) is best suited to resolve these features. During the pre‐injection experiment, the P‐wave velocities exhibited relatively low values between 1700 and 1900 m/s, which decreased to 1600–1800 m/s during the post‐injection phase (?5%). The analysis of the pre‐injection S‐wave data revealed slow S‐wave velocities between 600 and 800 m/s, while the post‐injection data revealed velocities between 500 and 700 m/s (?6%). These velocity estimates produced high Poisson's ratios between 0.36 and 0.46 for this highly porous (~50%) material. Differencing post‐ and pre‐injection data revealed an increase in Poisson's ratio of up to 5%. Both velocity and Poisson's ratio estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by an increase in pore pressure. The single‐well data supported the findings of the cross‐well experiments. P‐ and S‐wave velocities as well as Poisson's ratios were comparable to the estimates of the cross‐well data. The cross‐well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single‐well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out‐of‐plane reflections.  相似文献   

19.
Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness ~ 25 m at a depth of ~ 3 km.  相似文献   

20.
Geochemical reaction rate laws are often measured using crushed minerals in well-mixed laboratory systems that are designed to eliminate mass transport limitations. Such rate laws are often used directly in reactive transport models to predict the reaction and transport of chemical species in consolidated porous media found in subsurface environments. Due to the inherent heterogeneities of porous media, such use of lab-measured rate laws may introduce errors, leading to a need to develop methods for upscaling reaction rates. In this work, we present a methodology for using pore-scale network modeling to investigate scaling effects in geochemical reaction rates. The reactive transport processes are simulated at the pore scale, accounting for heterogeneities of both physical and mineral properties. Mass balance principles are then used to calculate reaction rates at the continuum scale. To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model are compared to the rates calculated by directly using laboratory-measured reaction rate laws and ignoring pore-scale heterogeneities. In this work, this methodology is demonstrated by upscaling anorthite and kaolinite reaction rates under simulation conditions relevant to geological CO2 sequestration. Simulation results show that under conditions with CO2 present at high concentrations, pore-scale concentrations of reactive species and reaction rates vary spatially by orders of magnitude, and the scaling effect is significant. With a much smaller CO2 concentration, the scaling effect is relatively small. These results indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. This work demonstrates the use of pore-scale network modeling as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allows the effects of pore-scale heterogeneities to be integrated into system behavior at multiple scales, thereby identifying important factors that contribute to the scaling effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号