首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

2.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

3.
CO2 has been injected into the saline aquifer Utsira Fm at the Sleipner field since 1996. In order to monitor the movement of the CO2 in the sub‐surface, the seventh seismic monitor survey was acquired in 2010, with dual sensor streamers which enabled optimal towing depths compared to previous surveys. We here report both on the time‐lapse observations and on the improved resolution compared to the conventional streamer surveys. This study shows that the CO2 is still contained in the subsurface, with no indications of leakage. The time‐lapse repeatability of the dual sensor streamer data versus conventional data is sufficient for interpreting the time‐lapse effects of the CO2 at Sleipner, and the higher resolution of the 2010 survey has enabled a refinement of the interpretation of nine CO2 saturated layers with improved thickness estimates of the layers. In particular we have estimated the thickness of the uppermost CO2 layer based on an analysis of amplitude strength together with time‐separation of top and base of this layer and found the maximum thickness to be 11 m. This refined interpretation gives a good base line for future time‐lapse surveys at the Sleipner CO2 injection site.  相似文献   

4.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

5.
In the Norwegian North Sea, the Sleipner field produces gas with a high CO2 content. For environmental reasons, since 1996, more than 11 Mt of this carbon dioxide (CO2) have been injected in the Utsira Sand saline aquifer located above the hydrocarbon reservoir. A series of seven 3D seismic surveys were recorded to monitor the CO2 plume evolution. With this case study, time‐lapse seismics have been shown to be successful in mapping the spread of CO2 over the past decade and to ensure the integrity of the overburden. Stratigraphic inversion of seismic data is currently used in the petroleum industry for quantitative reservoir characterization and enhanced oil recovery. Now it may also be used to evaluate the expansion of a CO2 plume in an underground reservoir. The aim of this study is to estimate the P‐wave impedances via a Bayesian model‐based stratigraphic inversion. We have focused our study on the 1994 vintage before CO2 injection and the 2006 vintage carried out after a CO2 injection of 8.4 Mt. In spite of some difficulties due to the lack of time‐lapse well log data on the interest area, the full application of our inversion workflow allowed us to obtain, for the first time to our knowledge, 3D impedance cubes including the Utsira Sand. These results can be used to better characterize the spreading of CO2 in a reservoir. With the post‐stack inversion workflow applied to CO2 storage, we point out the importance of the a priori model and the issue to obtain coherent results between sequential inversions of different seismic vintages. The stacking velocity workflow that yields the migration model and the a priori model, specific to each vintage, can induce a slight inconsistency in the results.  相似文献   

6.
Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO2 sequestration site in the North Sea is an excellent example. Storage of CO2 at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO2 storage monitoring is to be able to estimate the volume of the stored CO2 in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO2 saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.  相似文献   

7.
More than 50 000 tons of CO2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO2 had been injected. We show here that rather complex time‐lapse signatures of this CO2 can be clearly observed within a radius of about 300 m from the injection well. The highly irregular amplitude response within this radius is attributed to the heterogeneity of the injection reservoir. Time delays to a reflection below the injection level are also observed. Petrophysical measurements on core samples and geophysical logging of CO2 saturation levels allow an estimate of the total amount of CO2 visible in the seismic data to be made. These estimates are somewhat lower than the actual amount of CO2 injected at the time of the survey and they are dependent upon the choice of a number of parameters. In spite of some uncertainty, the close agreement between the amount injected and the amount observed is encouraging for quantitative monitoring of a CO2 storage site using seismic methods.  相似文献   

8.
The injection of CO2 at the Ketzin pilot site commenced in June 2008 and was terminated in August 2013 after 67 kT had been injected into a saline formation at a depth of 630–650 m. As part of the site monitoring program, four 3D surface seismic surveys have been acquired to date, one baseline and three repeats, of which two were conducted during the injection period, and one during the post‐injection phase. The surveys have provided the most comprehensive images of the spreading CO2 plume within the reservoir layer. Both petrophysical experiments on core samples from the Ketzin reservoir and spectral decomposition of the 3D time‐lapse seismic data show that the reservoir pore pressure change due to CO2 injection has a rather minor impact on the seismic amplitudes. Therefore, the observed amplitude anomaly is interpreted to be mainly due to CO2 saturation. In this study, amplitude versus offset analysis has been applied to investigate the amplitude versus offset response from the top of the sandstone reservoir during the injection and post‐injection phases, and utilize it to obtain a more quantitative assessment of the CO2 gaseous saturation changes. Based on the amplitude versus offset modelling, a prominent decrease in the intercept values imaged at the top of the reservoir around the injection well is indeed associated solely with the CO2 saturation increase. Any change in the gradient values, which would, in case it was positive, be the only signature induced by the reservoir pressure variations, has not been observed. The amplitude versus offset intercept change is, therefore, entirely ascribed to CO2 saturation and used for its quantitative assessment. The estimated CO2 saturation values around the injection area in the range of 40%–60% are similar to those obtained earlier from pulsed neutron‐gamma logging. The highest values of 80% are found in the second seismic repeat in close vicinity to the injection and observation wells.  相似文献   

9.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   

10.
Time‐lapse 3D seismic reflection data, covering the CO2 storage operation at the Snøhvit gas field in the Barents Sea, show clear amplitude and time‐delay differences following injection. The nature and extent of these changes suggest that increased pore fluid pressure contributes to the observed seismic response, in addition to a saturation effect. Spectral decomposition using the smoothed pseudo‐Wigner–Ville distribution has been used to derive discrete‐frequency reflection amplitudes from around the base of the CO2 storage reservoir. These are utilized to determine the lateral variation in peak tuning frequency across the seismic anomaly as this provides a direct proxy for the thickness of the causative feature. Under the assumption that the lateral and vertical extents of the respective saturation and pressure changes following CO2 injection will be significantly different, discrete spectral amplitudes are used to distinguish between the two effects. A clear spatial separation is observed in the distribution of low‐ and high‐frequency tuning. This is used to discriminate between direct fluid substitution of CO2, as a thin layer, and pressure changes that are distributed across a greater thickness of the storage reservoir. The results reveal a striking correlation with findings derived from pressure and saturation discrimination algorithms based on amplitude versus offset analysis.  相似文献   

11.
A calendar time interpolation method for 2D seismic amplitude maps, done in two steps, is presented. The contour interpolation part is formulated as a quadratic programming problem, whereas the amplitude value interpolation is based on a conditional probability formulation. The method is applied on field data from the Sleipner CO2 storage project. The output is a continuous image (movie) of the CO2 plume. Besides visualization, the output can be used to better couple 4D seismic to other types of data acquired. The interpolation uncertainty increases with the time gap between consecutive seismic surveys and is estimated by leaving a survey out (blind test). Errors from such tests can be used to identify problems in understanding the flow and possibly improve the interpolation scheme for a given case. Field‐life cost of various acquisition systems and repeat frequencies are linked to the time‐lapse interpolation errors. The error in interpolated amplitudes increased by 3%‐4% per year of interpolation gap for the Sleipner case. Interpolation can never fully replace measurements.  相似文献   

12.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

13.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

14.
Between the years 2008 and 2013, approximately 67 kilotons of CO2 have been injected at the Ketzin site, Germany. As part of the geophysical monitoring programme, time‐lapse electrical resistivity tomography has been applied using crosshole and surface‐downhole measurements of electrical resistivity tomography. The data collection of electrical resistivity tomography is partly based on electrodes that are permanently installed in three wells at the site (one injection well and two observation wells). Both types of ERT measurements consistently show the build‐up of a CO2‐related resistivity signature near the injection point. Based on the imaged resistivity changes and a petrophysical model, CO2 saturation levels are estimated. These CO2 saturations are interpreted in conjunction with CO2 saturations inferred from neutron‐gamma loggings. Apart from the CO2–brine substitution response in the observed resistivity changes, significant imprints from the dynamic behaviour of the CO2 in the reservoir are observed.  相似文献   

15.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

16.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

17.
A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (14 m) oxic epilimnion overlying a 200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification.The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid–SO4–Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a ‘memory’ of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid–SO4–Cl Crater lakes.The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by 4°C or providing heat to hypolimnetic waters or by seismic activity.Although Quilotoa lake contains a huge amount of dissolved CO2 (3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa are, therefore, recommended.  相似文献   

18.
The sequestration of CO2 in subsurface reservoirs constitutes an immediate counter‐measure to reduce anthropogenic emissions of CO2, now recognized by international scientific panels to be the single most critical factor driving the observed global climatic warming. To ensure and verify the safe geological containment of CO2 underground, monitoring of the CO2 site is critical. In the high Arctic, environmental considerations are paramount and human impact through, for instance, active seismic surveys, has to be minimized. Efficient seismic modelling is a powerful tool to test the detectability and imaging capability prior to acquisition and thus improve the characterization of CO2 storage sites, taking both geological setting and seismic acquisition set‐up into account. The unique method presented here avoids the costly generation of large synthetic data sets by employing point spread functions to directly generate pre‐stack depth‐migrated seismic images. We test both a local‐target approach using an analytical filter assuming an average velocity and a full‐field approach accounting for the spatial variability of point spread functions. We assume a hypothetical CO2 plume emplaced in a sloping aquifer inspired by the conditions found at the University of Svalbard CO2 lab close to Longyearbyen, Svalbard, Norway, constituting an unconventional reservoir–cap rock system. Using the local‐target approach, we find that even the low‐to‐moderate values of porosity (5%–18%) measured in the reservoir should be sufficient to induce significant change in seismic response when CO2 is injected. The sensitivity of the seismic response to changes in CO2 saturation, however, is limited once a relatively low saturation threshold of 5% is exceeded. Depending on the illumination angle provided by the seismic survey, the quality of the images of five hypothetical CO2 plumes of varying volume differs depending on the steepness of their flanks. When comparing the resolution of two orthogonal 2D surveys to a 3D survey, we discover that the images of the 2D surveys contain significant artefacts, the CO2‐brine contact is misplaced and an additional reflector is introduced due to the projection of the point spread function of the unresolvable plane onto the imaging plane. All of these could easily lead to a misinterpretation of the behaviour of the injected CO2. Our workflow allows for testing the influence of geological heterogeneities in the target aquifer (igneous intrusions, faults, pervasive fracture networks) by utilizing increasingly complex and more realistic geological models as input as more information on the subsurface becomes available.  相似文献   

19.
We describe two practicable approaches for an efficient computation of seismic traveltimes and amplitudes. The first approach is based on a combined finite‐difference solution of the eikonal equation and the transport equation (the ‘FD approach’). These equations are formulated as hyperbolic conservation laws; the eikonal equation is solved numerically by a third‐order ENO–Godunov scheme for the traveltimes whereas the transport equation is solved by a first‐order upwind scheme for the amplitudes. The schemes are implemented in 2D using polar coordinates. The results are first‐arrival traveltimes and the corresponding amplitudes. The second approach uses ray tracing (the ‘ray approach’) and employs a wavefront construction (WFC) method to calculate the traveltimes. Geometrical spreading factors are then computed from these traveltimes via the ray propagator without the need for dynamic ray tracing or numerical differentiation. With this procedure it is also possible to obtain multivalued traveltimes and the corresponding geometrical spreading factors. Both methods are compared using the Marmousi model. The results show that the FD eikonal traveltimes are highly accurate and perfectly match the WFC traveltimes. The resulting FD amplitudes are smooth and consistent with the geometrical spreading factors obtained from the ray approach. Hence, both approaches can be used for fast and reliable computation of seismic first‐arrival traveltimes and amplitudes in complex models. In addition, the capabilities of the ray approach for computing traveltimes and spreading factors of later arrivals are demonstrated with the help of the Shell benchmark model.  相似文献   

20.
Lake Albano (Alban Hills volcanic complex, Central Italy) is located in a densely populated area near Rome. The deep lake waters have significant dissolved CO2 concentrations, probably related to sub-lacustrine fluid discharges fed by a pressurized CO2-rich reservoir. The analytical results of geochemical surveys carried out in 1989–2010 highlight the episodes of CO2 removal from the lake. The total mass of dissolved CO2 decreased from ∼5.8 × 107 kg in 1989 to ∼0.5 × 107 kg in 2010, following an exponential decreasing trend. Calculated values of both dissolved inorganic carbon and CO2 concentrations along the vertical profile of the lake indicate that this decrease is caused by CO2 release from the epilimnion, at depth <9 m, combined with (1) water circulation at depth <95 m and (2) CO2 diffusion from the deeper lake layers. According to this model, Lake Albano was affected by a large CO2 input that coincided with the last important seismic swarm at Alban Hills in 1989, suggesting an intimate relationship between the addition of deep-originated CO2 to the lake and seismic activity. In the case of a CO2 degassing event of an order of magnitude larger than the one that occurred in 1989, the deepest part of Lake Albano would become CO2-saturated, resulting in conditions compatible with the occurrence of a gas outburst. These results reinforce the idea that a sudden CO2 input into the lake may cause the release of a dense gas cloud, presently representing the major volcanic threat for this densely populated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号